Deep Reinforcement Learning Notes (DS)

Dongda Li dli160@syr.edu

Contents

1	Background						
2	1. Introduction						
3	2. N	IDP		3			
4	3. P	lanning	by Dynamic Programming	3			
5	4. N	Iodel-fr	ee Prediction	4			
6	5. Model-free Control						
		6.0.1	GLIE Monte-Carlo Control	5			
		6.0.2	Importance Sampling	6			
		6.0.3	Q-learning	6			
7	6. V	nction Approximation	7				
	7.1	Introdu	uction	7			
		7.1.1	Why?	7			
		7.1.2	Value Function Approximation	7			
		7.1.3	Approximator Considerations	7			
	7.2	Increm	nental Methods	7			
		7.2.1	Basic SGD for Value Function Approximation	7			
		7.2.2	Table Lookup as a Special Case	7			
		7.2.3	Incremental Prediction Algorithms	8			
8	7. P	olicy G1	adient Methods	8			
	uction	8					
		8.1.1	Policy-based Reinforcement Learning	8			
		8.1.2	Policy Gradient	8			
		8.1.3	Policy Gradient Theorem	9			
	8.2	Monte	-Carlo Policy Gradient (REINFORCE)	9			

	8.3	Actor-Critic Policy Gradient					
		8.3.1	Idea	9			
		8.3.2	Action-Value Actor-Critic	9			
		8.3.3	Reducing Variance using a Baseline	10			
		8.3.4	Deterministic Policy Gradient (Off-policy)	11			
9	8. In	itegrati	ng Learning and Planning	11			
	9.1	Introdu	uction	11			
	9.2	Planning with a Model					
		9.2.1	Sample-based Planning	12			
	9.3	Integrated Architectures					
	9.4	Simulation-Based Search					
		9.4.1	Simulation-Based Search Process	12			
		9.4.2	Sample Monte-Carlo Search	12			
		9.4.3	Monte-Carlo Tree Search (MCTS)	13			
10 9. Exploration and Exploitation 13							
	10.1	Ways t	to Explore	13			
	10.2	2 Multi-arm Bandit					
		10.2.1	Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB)	14			
	10.3	Solvin	g Information State Space Bandits — MDP	15			
	10.4	MDP Exploration with UCB 15					

1 Background

I started learning Reinforcement Learning in 2018, and I first learned it from the book *Deep Re-inforcement Learning Hands-On* by Maxim Lapan. That book taught me some high level concepts of Reinforcement Learning and how to implement it using PyTorch step by step. However, when I dug deeper into Reinforcement Learning. I found that the high level intuition was not enough. So I read *Reinforcement Learning: An Introduction* by S. G. (available at http://incompleteideas.net/book/bookdraft2017nov5.pdf), and by following the course *Reinforcement Learning* by David Silver (see https://www.youtube.com/watch?v=2pWv7G0vuf0), I gained a deeper understanding of RL. For the code implementations from the book and course, refer to the GitHub repository at https://github.com/dennybritz/reinforcement-learning.

Here are some of my notes taken while attending the course. For some concepts and ideas that are hard to understand, I add some of my own explanations and intuitions. I omit some simpler concepts in these notes; hopefully, this note will also help you start your RL tour.

2 1. Introduction

RL Features

- Reward signal
- · Feedback delay
- Sequence is not i.i.d.
- Actions affect subsequent data

Why Using Discounted Reward?

- Mathematically convenient.
- Avoids infinite returns in cyclic Markov processes.
- We are not very confident about our **prediction of reward**; perhaps we are only confident about the near future steps.
- Humans show a preference for immediate reward.
- It is sometimes possible to use an undiscounted reward.

3 2. MDP

In an MDP, the reward is an action reward, not a state reward!

$$R_s^a = E[R_{t+1} \mid S_t = s, A_t = a]$$

The Bellman Optimality Equation is **non-linear**, so we solve it using iterative methods.

4 3. Planning by Dynamic Programming

Planning (when you clearly know the MDP model and try to find an optimal policy)

Prediction: Given an MDP and a policy, you output the value function (policy evaluation).

Control: Given an MDP, you output the optimal value function and optimal policy (solving the MDP).

- Policy Evaluation.
- Policy Iteration:
 - Policy Evaluation (run for k steps until convergence).
 - Policy Improvement:

- * If we iterate policy evaluation and improvement repeatedly, knowing the MDP, we will eventually obtain the optimal policy (as proved). Thus, policy iteration solves the MDP.
- Value Iteration:
 - 1. Value update (one step of policy evaluation).
 - 2. Policy improvement (one step greedy based on the updated value).

Iterating this also solves the MDP.

Asynchronous Dynamic Programming

- In-place dynamic programming (update the old value immediately with the new value, not waiting for all states to update).
- Prioritized sweeping (based on the error in value iteration).
- Real-time dynamic programming (run the game in real-time).

5 4. Model-free Prediction

Model-free prediction is accomplished by sampling.

Monte-Carlo Learning

Every update in Monte-Carlo learning must span a full episode.

• First-Visit Monte-Carlo Policy Evaluation:

Run the agent following the policy; the **first** time that state s is visited in an episode, perform the following calculations:

$$N(s) \leftarrow N(s) + 1, \quad S(s) \leftarrow S(s) + G_t, \quad V(s) = \frac{S(s)}{N(s)}$$

and $V(s) \to v_{\pi}$ as $N(s) \to \infty$.

• Every-Visit Monte-Carlo Policy Evaluation:

Run the agent following the policy, and each time state s is visited in an episode (even if in a loop), update.

Incremental Mean:

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$
$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$
$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$
$$= \mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1})$$

Thus, by the incremental mean:

$$N(S_t) \leftarrow N(S_t) + 1, \quad V(S_t) \leftarrow V(S_t) + \frac{1}{N_t}(G_t - V(S_t)).$$

In non-stationary problems, it may be useful to track a running mean, i.e.,

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)).$$

Temporal-Difference (TD) Learning

TD learning uses incomplete episodes and bootstraps the reward:

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

and

$$V(s_t) \leftarrow V(s_t) + \alpha \big(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \big).$$

The TD target is

$$G_t = R_{t+1} + \gamma V(S_{t+1})$$
 (TD(0)).

The TD error is

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$TD(\lambda)$ — Balancing between MC and TD

Let the TD target look n steps into the future. If n is very large and the episode is terminal, then it is equivalent to Monte-Carlo.

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}),$$

$$V(S_t) \leftarrow V(S_t) + \alpha \big(G_t^{(n)} - V(S_t) \big).$$

Averaging *n*-step returns produces forward $TD(\lambda)$:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)},$$

$$V(S_t) \leftarrow V(S_t) + \alpha \big(G_t^{\lambda} - V(S_t) \big).$$

Eligibility Traces combine frequency and recency heuristics:

$$E_0(s) = 0,$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(S_t = s).$$

Backward TD(λ) (using eligibility traces):

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t),$$

$$V(s) \leftarrow V(s) + \alpha \, \delta_t \, E_t(s).$$

If updates are done offline (i.e., in an episode using the old value), then the sum of forward $TD(\lambda)$ equals the sum of backward $TD(\lambda)$:

$$\sum_{t=1}^{T} \alpha \,\delta_t \, E_t(s) = \sum_{t=1}^{T} \alpha \big(G_t^{\lambda} - V(S_t) \big) \mathbb{1}(S_t = s).$$

6 5. Model-free Control

An ϵ -greedy policy is used to add exploration to ensure that the policy both improves and explores the environment.

On-policy Monte-Carlo Control

For every episode:

- 1. Policy Evaluation: Perform Monte-Carlo policy evaluation to estimate $Q \approx q_{\pi}$.
- 2. Policy Improvement: Use an ϵ -greedy policy improvement based on Q(s, a).

Greedy in the limit with infinite exploration (GLIE) will eventually find the optimal solution.

6.0.1 GLIE Monte-Carlo Control

For the kth episode, set $\epsilon \leftarrow 1/k$. As k increases, ϵ_k reduces to zero, and the optimal policy is obtained.

On-policy TD Learning

Sarsa:

$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big(R + \gamma Q(S',A') - Q(S,A) \Big)$$

On-Policy Sarsa:

For every time-step:

- Policy Evaluation: Use Sarsa to estimate $Q \approx q_{\pi}$.
- **Policy Improvement:** Apply ϵ -greedy policy improvement based on Q(s, a).

Forward *n*-step Sarsa leads to Sarsa(λ), analogous to TD(λ).

Eligibility Traces:

$$E_0(s, a) = 0,$$

$$E_t(s, a) = \gamma \lambda E_{t-1}(s, a) + 1(S_t = s, A_t = a).$$

Backward Sarsa(λ) updates, for all (s, a) at each time-step:

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t),$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \, \delta_t \, E_t(s, a).$$

Intuition: The current state-action pair's reward and value influence all other state-action pairs, with more influence on those that are more recent and frequent. Using only one-step Sarsa would update only one state-action pair per reward, making learning slower.

Off-policy Learning

6.0.2 Importance Sampling

$$E_{X \sim P}[f(X)] = \sum_{X} P(X)f(X)$$
$$= \sum_{X} Q(X) \frac{P(X)}{Q(X)} f(X)$$
$$= E_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

For off-policy TD, the update is:

$$V(s_t) \leftarrow V(s_t) + \alpha \left(\frac{\pi(A_t \mid S_t)}{\mu(A_t \mid S_t)} \Big(R_{t+1} + \gamma V(S_{t+1}) - V(s_t) \Big) \right)$$

6.0.3 Q-learning

In Q-learning, the next action is chosen using the behavior policy $A_{t+1} \sim \mu(\cdot \mid S_t)$, but we update using a target policy $A' \sim \pi(\cdot \mid S_t)$:

$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big(R_{t+1} + \gamma Q(S_{t+1},A') - Q(S,A) \Big)$$

No matter what action is actually taken next, we update Q according to our target policy. Thus, the Q-values converge to those of the target policy π .

Off-policy Control with Q-learning: The target policy is greedy with respect to Q(s, a):

$$\pi(S_{t+1}) = \arg\max_{a'} Q(S_{t+1}, a')$$

The behavior policy μ can be, for example, ϵ -greedy with respect to Q(s, a) or even a completely random policy; it does not matter because the update is off-policy.

The Q-learning update becomes:

$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big(R_{t+1} + \gamma \max_{a'} Q(S',a') - Q(S,A) \Big)$$

and Q-learning converges to the optimal action-value function $Q(s, a) \rightarrow q_*(s, a)$.

Note: Q-learning can be used both off-policy and on-policy. For on-policy, if you use an ϵ -greedy policy update, Sarsa is a good on-policy method; using Q-learning is also acceptable since ϵ -greedy is similar to the max-Q policy.

7 6. Value Function Approximation

Before this lecture, we discussed tabular learning (maintaining a Q-table or value table).

7.1 Introduction

7.1.1 Why?

- The state space is large.
- The state space can be continuous.

7.1.2 Value Function Approximation

We approximate the value function and action-value function as:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s),$$

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a).$

7.1.3 Approximator Considerations

- Non-stationarity: State values change as the policy changes.
- Non-i.i.d.: Samples are generated according to the policy.

7.2 Incremental Methods

7.2.1 Basic SGD for Value Function Approximation

Using stochastic gradient descent (SGD) with feature vectors:

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

Linear value function approximation:

$$\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w} = \sum_{j=1}^n x_j(s) w_j,$$
$$J(\mathbf{w}) = E_{\pi} \Big[(v_{\pi}(s) - \hat{v}(s, \mathbf{w}))^2 \Big].$$

The gradient update is:

$$\Delta \mathbf{w} = \alpha \big(v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \big) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w}) = \alpha \big(v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \big) \mathbf{x}(s).$$

7.2.2 Table Lookup as a Special Case

A table lookup is a special case of linear approximation where the feature vector is:

$$\mathbf{x}(s) = \begin{pmatrix} 1(s=s_1)\\ \vdots\\ 1(s=s_n) \end{pmatrix},$$

and then

$$\hat{v}(s, \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w} = \sum_{i=1}^n \mathbb{1}(s = s_i) w_i.$$

7.2.3 Incremental Prediction Algorithms

Supervision:

• For Monte-Carlo (MC), the target is the return G_t :

$$\Delta \mathbf{w} = \alpha \big(G_t - \hat{v}(S_t, \mathbf{w}) \big) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}).$$

• For TD(0), the target is the TD target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$:

$$\Delta \mathbf{w} = \alpha \Big(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}) \Big) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}).$$

- Note: The TD target contains $\hat{v}(S_{t+1}, \mathbf{w})$, which depends on \mathbf{w} , but we do not differentiate through it (we treat it as a constant at each time step).
- For TD(λ), the target is the λ -return G_t^{λ} :

$$\Delta \mathbf{w} = \alpha \big(G_t^{\lambda} - \hat{v}(S_t, \mathbf{w}) \big) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}).$$

In the backward view of linear $TD(\lambda)$:

$$\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w}),$$

$$E_t = \gamma \lambda E_{t-1} + \mathbf{x}(S_t),$$

$$\Delta \mathbf{w} = \alpha \, \delta_t \, E_t.$$

8 7. Policy Gradient Methods

8.1 Introduction

8.1.1 Policy-based Reinforcement Learning

We directly parameterize the policy:

$$\pi_{\theta}(s, a) = \mathcal{P}[a \mid s, \theta].$$

Advantages:

- Better convergence properties.
- Effective in high-dimensional or continuous action spaces.
- Can learn stochastic policies.

Disadvantages:

- Convergence to a local rather than global optimum.
- Evaluating a policy is typically inefficient and high variance.

8.1.2 Policy Gradient

Let $J(\theta)$ be the policy objective function. To find a local **maximum** of the policy objective function, we perform: ΛA

$$\Delta \theta = \alpha \, \nabla_{\theta} J(\theta),$$

where

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{pmatrix}.$$

Score Function Trick:

$$\nabla_{\theta} \pi(s, a) = \pi_{\theta}(s, a) \,\nabla_{\theta} \log \pi_{\theta}(s, a).$$

The score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$.

Policy Examples:

- Softmax policy for discrete actions.
- Gaussian policy for continuous action spaces.

For one-step MDPs, applying the score function trick:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) \mathcal{R}_{s,a},$$
$$\nabla J(\theta) = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s,a}$$
$$= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) r].$$

8.1.3 Policy Gradient Theorem

The policy gradient is given by:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \, Q^{\pi_{\theta}}(s, a) \right].$$

8.2 Monte-Carlo Policy Gradient (REINFORCE)

Using the return v_t as an unbiased sample of $Q^{\pi_{\theta}}(s_t, a_t)$:

$$\Delta \theta_t = \alpha \, \nabla_\theta \log \pi_\theta(s_t, a_t) \, v_t, \quad \text{with } v_t = G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots.$$

Pseudo-code for REINFORCE:

1: function REINFORCE

- Initialize θ arbitrarily 2:
- for each episode $\{s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, R_T\} \sim \pi_{\theta}$ do for t = 1 to T 1 do 3:
- 4:
- $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t$ 5:
- 6: end for
- 7: end for
- 8: return θ
- 9: end function

REINFORCE suffers from a high variance problem since v_t is estimated by sampling.

8.3 Actor-Critic Policy Gradient

8.3.1 Idea

Use a critic to estimate the action-value function:

$$Q_w(s,a) \approx Q^{\pi_\theta}(s,a).$$

The actor-critic algorithm approximates the policy gradient as:

$$\nabla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(s, a) \, Q_w(s, a) \big],$$

and the update becomes:

$$\Delta \theta = \alpha \, \nabla_\theta \log \pi_\theta(s, a) \, Q_w(s, a).$$

8.3.2 Action-Value Actor-Critic

Using a linear function approximator $Q_w(s, a) = \phi(s, a)^T w$:

- The critic updates w using TD(0).
- The actor updates θ using the policy gradient.

Pseudo-code for QAC:

Algorithm 1 QAC

-	1 040
1:	procedure QAC
2:	Initialize state s and policy parameters θ
3:	Sample action $a \sim \pi_{\theta}(s)$
4:	for each step do
5:	Sample reward $r = \mathbb{R}(s, a)$
6:	Sample transition $s' \sim P(s' \mid s, a)$
7:	Sample action $a' \sim \pi_{\theta}(s')$
8:	$\delta = r + \gamma Q_w(s', a') - Q_w(s, a)$
9:	$\theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a)$
10:	$w = w + \beta \delta \psi(s, a)$
11:	$s \leftarrow s'; a \leftarrow a'$
12:	end for
13:	end procedure

Observation: Value-based learning is a special case of actor-critic, since the greedy policy derived from Q (when the policy gradient step size is very large) will assign probability nearly 1 to the action with maximum Q.

8.3.3 Reducing Variance using a Baseline

Subtracting a baseline function B(s) from the policy gradient can reduce variance without changing its expectation:

$$\mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) B(s) \right] = \sum_{s \in \mathcal{S}} d^{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) B(s)$$
$$= \sum_{s \in \mathcal{S}} d^{\pi_{\theta}}(s) B(s) \nabla_{\theta} \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a)$$
$$= \sum_{s \in \mathcal{S}} d^{\pi_{\theta}}(s) B(s) \nabla_{\theta}(1)$$
$$= 0.$$

A good baseline is the state value function: $B(s) = V^{\pi_{\theta}}(s)$. Then, we can define the advantage function:

$$A^{\pi_{\theta}}(s,a) = Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

and the policy gradient becomes:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \, A^{\pi_{\theta}}(s, a) \right].$$

Estimating the Advantage Function:

- Use two networks to estimate Q and V separately (more complex).
- More commonly, use bootstrapping via the TD error:

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s),$$

which is an unbiased estimate of the advantage:

$$E_{\pi_{\theta}}\left[\delta^{\pi_{\theta}} \mid s, a\right] = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s) = A^{\pi_{\theta}}(s, a).$$

Thus,

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \big[\nabla_{\theta} \log \pi_{\theta}(s, a) \, \delta^{\pi_{\theta}} \big].$$

In practice, an approximate TD error for one step is:

$$\delta_v = r + \gamma V_v(s') - V_v(s).$$

For the critic, we can use methods such as MC, TD(0), $TD(\lambda)$, or $TD(\lambda)$ with eligibility traces.

Examples:

• MC Policy Gradient:

$$\Delta \theta = \alpha \left(v_t - V_v(s_t) \right) \nabla_\theta \log \pi_\theta(s_t, a_t)$$

• TD(0):

$$\Delta \theta = \alpha \left(r + \gamma V_v(s_{t+1}) - V_v(s_t) \right) \nabla_\theta \log \pi_\theta(s_t, a_t)$$

• TD(λ):

$$\Delta \theta = \alpha \left(v_t^{\lambda} + \gamma V_v(s_{t+1}) - V_v(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$

• $TD(\lambda)$ with Eligibility Traces (backward view):

$$\delta_t = r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t),$$

$$e_{t+1} = \lambda e_t + \nabla_\theta \log \pi_\theta(s, a),$$

$$\Delta \theta = \alpha e_t.$$

For continuous action spaces, Gaussian policies are often used, but due to the noise inherent in Gaussian distributions, it is sometimes preferable to use a *deterministic policy* (by selecting the mean) to reduce noise and facilitate convergence. This leads to the **Deterministic Policy Gradient** (**DPG**) algorithm.

8.3.4 Deterministic Policy Gradient (Off-policy)

For a deterministic policy:

$$a_t = \mu(s_t \mid \theta^{\mu})$$

with a Q-network parameterized by θ^Q and the state distribution under the behavior policy ρ^{β} , the critic loss is:

$$L(\theta^Q) = \mathbb{E}_{s_t \sim \rho^\beta, a_t \sim \beta, r_t \sim E} \left[(Q(s_t, a_t \mid \theta^Q) - y_t)^2 \right],$$

$$y_t = r(s_t, a_t) + \gamma Q(s_{t+1}, \mu(s_{t+1}) \mid \theta^Q).$$

The actor's objective is:

$$\begin{split} J(\theta^{\mu}) &= \mathbb{E}_{s \sim \rho^{\beta}} \Big[Q \big(s, \mu(s \mid \theta^{\mu}) \mid \theta^{Q} \big) \Big], \\ \nabla_{\theta^{\mu}} J &\approx \mathbb{E}_{s \sim \rho^{\beta}} \Big[\nabla_{a} Q(s, a \mid \theta^{Q}) \big|_{a = \mu(s)} \nabla_{\theta^{\mu}} \mu(s \mid \theta^{\mu}) \Big] \end{split}$$

To improve training stability, target networks are used for both the critic and actor, updated by a *soft update*:

$$\begin{split} \theta^{Q'} &\leftarrow \tau \, \theta^Q + (1-\tau) \theta^{Q'}, \\ \theta^{\mu'} &\leftarrow \tau \, \theta^\mu + (1-\tau) \theta^{\mu'}, \end{split}$$

with τ set very small (e.g., $\tau = 0.001$).

Additionally, noise is added to the deterministic action during exploration:

$$\mu'(s_t) = \mu(s_t \mid \theta_t^{\mu}) + \mathcal{N}_t,$$

where \mathcal{N}_t is noise (e.g., Ornstein-Uhlenbeck noise).

9 8. Integrating Learning and Planning

9.1 Introduction

Model-free RL:

- No model.
- Learn the value function (and/or policy) directly from experience.

Model-based RL:

- Learn a model from experience.
- Plan the value function (and/or policy) using the model.

We define a model as $\mathcal{M} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$, where

$$S_{t+1} \sim \mathcal{P}_{\eta}(s_{t+1} \mid s_t, A_t), \quad R_{t+1} = \mathcal{R}_{\eta}(R_{t+1} \mid s_t, A_t)$$

Model learning from experience $\{S_1, A_1, R_2, \dots, S_T\}$ is performed via supervised learning:

$$S_1, A_1 \to R_2, S_2,$$
$$S_2, A_2 \to R_3, S_3,$$
$$\vdots$$
$$S_{T-1}, A_{T-1} \to R_T, S_T.$$

Here, learning $s, a \to r$ is a regression problem, and learning $s, a \to s'$ is a density estimation problem.

9.2 Planning with a Model

9.2.1 Sample-based Planning

- 1. Sample experience from the model.
- 2. Apply model-free RL methods to the samples, such as Monte-Carlo control, Sarsa, or Q-learning.

The performance of model-based RL is limited to the optimal policy for the approximate MDP.

9.3 Integrated Architectures

Integrating learning and planning is exemplified by the Dyna framework:

- Learn a model from real experience.
- Learn and plan the value function (and/or policy) using both real and simulated experience.

9.4 Simulation-Based Search

- Forward Search: Select the best action by lookahead.
- Build a search tree with the current state s_t at the root.
- Solve the sub-MDP starting from the current state.

9.4.1 Simulation-Based Search Process

- 1. Simulate episodes of experience from the current state using the model.
- 2. Apply model-free RL to the simulated episodes (e.g., Monte-Carlo search, TD search).

9.4.2 Sample Monte-Carlo Search

- Given a model \mathcal{M}_v and a simulation policy π :
 - 1. For each action $a \in A$, simulate K episodes from the current (real) state s_t :

$$\{s_t, a, R_{t+1}^k, S_{t+1}^k, A_{t+1}^k, \dots, s_T^k\}_{k=1}^K \sim \mathcal{M}_v, \pi.$$

2. Evaluate the action by computing the mean return:

$$Q(s_t, a) = \frac{1}{K} \sum_{k=1}^{K} G_t \quad \xrightarrow{P} \quad q_{\pi}(s_t, a).$$

• Select the action with maximum estimated value:

$$a_t = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(s_t, a).$$

9.4.3 Monte-Carlo Tree Search (MCTS)

• Given a model \mathcal{M}_v , simulate K episodes from the current state s_t using the simulation policy π :

$$\{s_t, A_t^k, R_{t+1}^k, S_{t+1}^k, A_{t+1}^k, \dots, s_T^k\}_{k=1}^K \sim \mathcal{M}_v, \pi$$

- Build a search tree of visited states and actions.
- Evaluate states Q(s, a) by the mean return of episodes passing through s, a:

$$Q(s_t, a) = \frac{1}{N(s, a)} \sum_{k=1}^K \sum_{u=t}^T \mathbf{1}(s_u, A_u = (s, a)) G_u \quad \xrightarrow{P} \quad q_{\pi}(s_t, a).$$

• After search is finished, select the real action with maximum value:

$$a_t = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(s_t, a).$$

Each simulation consists of two phases:

- Tree Policy (improves): Pick actions to maximize Q(s, a).
- Default Policy (fixed): Pick actions randomly.

Note: Q-values are updated on the entire subtree, not only at the current state. After each search episode, the policy is improved based on the updated Q-values and a new search begins. With progress, the search exploits promising directions while still exploring others (e.g., via MCTS with Upper Confidence Bounds as in AlphaZero).

Temporal-Difference Search: For example, update using Sarsa:

$$\Delta Q(S,A) = \alpha \Big(R + \gamma Q(S',A') - Q(S,A) \Big).$$

One may also use function approximation for simulated Q-values.

Dyna-2:

- Long-term memory (real experience): Use TD learning.
- Short-term memory (working memory): Use simulated experience with TD search & TD learning.

10 9. Exploration and Exploitation

10.1 Ways to Explore

• Random Exploration:

- Use Gaussian noise in continuous action spaces.
- ϵ -greedy: choose a random action with probability ϵ .
- Softmax: select an action based on the softmax of the policy distribution.
- **Optimism in the Face of Uncertainty:** Prefer to explore state/actions with highest uncertainty.
 - Optimistic Initialization.
 - UCB (Upper Confidence Bounds).
 - Thompson Sampling.
- Information State Space:
 - Gittins indices.
 - Bayes-adaptive MDPs.

State-action exploration versus parameter exploration.

10.2 Multi-arm Bandit

Total Regret:

$$L_t = \mathbb{E}\left[\sum_{\tau=1}^t (V^* - Q(a_\tau))\right]$$
$$= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)] (V^* - Q(a))$$
$$= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)] \Delta a.$$

Optimistic Initialization:

- Initialize Q(a) to a high value.
- Then act greedily.
- This leads to linear regret.

 ϵ -greedy:

- Also leads to linear regret.
- Decaying ϵ -greedy (with properly tuned decay) can yield sub-linear regret (often logarithmic in *t*).

The regret lower bound (logarithmic bound):

$$\lim_{t \to \infty} L_t \ge \log t \sum_{a:\Delta a > 0} \frac{\Delta a}{KL(\mathcal{R}^a \parallel \mathcal{R}^{a_*})}.$$

10.2.1 Optimism in the Face of Uncertainty: Upper Confidence Bounds (UCB)

• Estimate an upper confidence $U_t(a)$ for each action value such that with high probability,

$$Q(a) \le \hat{Q}_t(a) + U_t(a).$$

- The upper confidence depends on the number of times N(s) has been sampled.
- Select the action maximizing the upper confidence bound:

$$A_t = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \Big[Q(s_t, a) + U_t(a) \Big].$$

Theorem (Hoeffding's Inequality):

Let x_1, \ldots, x_t be i.i.d. random variables in [0, 1], and let $\overline{X}_t = \frac{1}{t} \sum_{\tau=1}^t x_{\tau}$. Then, $\mathbb{P}\Big[\mathbb{E}[X] > \overline{X}_t + u\Big] \le e^{-2tu^2}$.

Applying Hoeffding's inequality to the rewards of the bandit for a given action *a*:

$$\mathbb{P}\Big[Q(a) > \hat{Q}(a) + U_t(a)\Big] \le e^{-2N_t(a)U_t(a)^2}.$$

If we set a probability p such that this holds:

$$e^{-2N_t(a)U_t(a)^2} = p,$$

then solving for $U_t(a)$ gives:

$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

If we let $p = t^{-4}$, then:

$$U_t(a) = \sqrt{\frac{2\log t}{N_t(a)}}$$

This ensures we select the optimal action as $t \to \infty$.

UCB1 Algorithm:

$$A_t = \operatorname*{arg\,max}_{a \in \mathcal{A}} \left[Q(s_t, a) + \sqrt{\frac{2 \log t}{N_t(a)}} \right].$$

The UCB algorithm achieves logarithmic asymptotic total regret:

$$\lim_{t \to \infty} L_t \le 8 \log t \sum_{a:\Delta > 0} \Delta a.$$

Bayesian Bandits: Probability matching (Thompson Sampling) is optimal for the one-armed bandit, though it may not be as effective in MDPs.

10.3 Solving Information State Space Bandits — MDP

Define an MDP on the information state space.

10.4 MDP Exploration with UCB

In an MDP, UCB can be generalized as:

$$A_t = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \Big[Q(s_t, a) + U_t(s_t, a) \Big].$$

Another algorithm is the R-Max algorithm.