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1 Background

This note is the class note of UBC Deep Reinforcement Learning, namely CS294-112 or CS285.
The lecturer is Sergey Levine. The lecture videos can be found on YouTube. I wrote two notes on
reinforcement learning before, one is basic RL, the other is the David Silver class note.

Different from the previous courses, this course includes a deeper theoretical view, more recent
methods, and some advanced topics, especially in model-based RL and meta-learning. It is more
suitable for those who are interested in robotic control and a deeper understanding of reinforcement
learning.

This class is a little bit hard to study, so make sure you follow it closely.
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2 Imitation Learning

In imitation learning, the objective is to train a policy that mimics the behavior of an expert. However,
one of the key challenges is the distribution drift problem, where the distribution of states encountered
during training differs from the distribution encountered when the learned policy is deployed. In
this section, we discuss the main problem of distribution drift, describe a solution using DAgger
(Dataset Aggregation), and elaborate on additional challenges and a formulation of a reward function
for imitation learning.

2.1 The Main Problem: Distribution Drift

A central challenge in imitation learning is that the training dataset is often collected from an expert
or human demonstrator, i.e.,

pdata(ot),

which is different from the distribution of observations encountered under the learned policy,

pπθ
(ot).

When the learned policy πθ is executed, it may visit states that are rarely (or never) seen in the expert
demonstrations. This mismatch can cause the policy to perform poorly when deployed, as it has not
learned how to act in these unfamiliar states.

2.2 DAgger: Dataset Aggregation

One effective method to address the distribution drift problem is the DAgger algorithm (Dataset
Aggregation). The main idea behind DAgger is to gradually collect training data from the distribution
induced by the current policy, pπθ

(ot), rather than relying solely on the original expert dataset
pdata(ot).

2.2.1 DAgger Procedure

The goal is to collect training data that better reflects the distribution of observations under πθ while
still having expert labels for the correct actions. The procedure is as follows:

1. Initial Training: Train an initial policy πθ(at | ot) using the expert data

D = {o1, a1, . . . , oN , aN}.

2. Data Collection: Run the current policy πθ(at | ot) in the environment to collect a dataset
of observations:

Dπ = {o1, . . . , oM}.
3. Expert Labeling: Have an expert label the observations in Dπ by providing the correspond-

ing actions.
4. Dataset Aggregation: Aggregate the new labeled data with the existing dataset:

D ← D ∪Dπ.

By iteratively repeating these steps, the training dataset gradually becomes more representative of the
state distribution encountered by the policy, thereby mitigating the distribution drift problem.

2.3 Challenges in Imitation Learning

Even with techniques like DAgger, there are additional challenges that can prevent the model from
perfectly mimicking the expert:

2.3.1 Non-Markovian Behavior

• Issue: The expert’s behavior may depend on the history of observations rather than solely
on the current observation.

• Solution: Incorporate historical information (e.g., using recurrent neural networks or
stacking multiple observations) to better capture the context.
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2.3.2 Multimodal Behavior

• Issue: In many cases, there may be multiple valid actions for a given observation (multi-
modality), which complicates learning.

• Discrete Actions:
– A Softmax output is typically used to represent a probability distribution over actions,

naturally handling multimodality.
• Continuous Actions: Special care is needed for continuous actions:

– Mixture of Gaussians: The model can output parameters for a mixture of Gaussian
distributions, allowing for multiple modes.

– Latent Variable Models: Injecting noise into the network input or using latent vari-
ables can help capture multimodal behavior.

– Autoregressive Discretization: Discretizing the continuous action space in an autore-
gressive manner can also be an effective strategy.

2.3.3 Other Practical Issues

• Limited Expert Data: Human-labeled data is often finite, which can limit the diversity of
training examples.

• Expert Performance: In some domains, human experts may not provide optimal demon-
strations, potentially limiting the performance ceiling of imitation learning.

2.4 Reward Function for Imitation Learning

An alternative perspective on imitation learning is to view it as a reinforcement learning problem
where the reward function is designed to encourage the policy to match the expert’s behavior. One
commonly used reward formulation is:

r(s, a) = log p(a = π∗(s) | s),

where π∗(s) represents the expert’s action at state s. This reward function assigns higher rewards to
actions that are more likely under the expert’s policy, thereby guiding the learning process toward
expert-like behavior.

In summary, imitation learning seeks to replicate expert behavior by addressing the distribution
drift between training data and the policy-induced state distribution. Methods like DAgger help in
collecting a more representative dataset, while various modeling strategies are employed to handle
non-Markovian and multimodal behaviors. Finally, reward formulations based on expert likelihood
can further guide the policy toward expert performance.
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3 MDP and RL Introduction

In this section, we introduce the fundamental concepts of Markov Decision Processes (MDPs) and
Reinforcement Learning (RL). We begin with the goal of RL, followed by definitions of the value
function V and the action-value function Q. We then describe the various types of RL algorithms,
discuss the trade-offs inherent in these methods, and state common assumptions made in RL.

3.1 The Goal of Reinforcement Learning

The objective in reinforcement learning is to learn a policy πθ(a|s) that maximizes the expected
cumulative reward over a sequence (or trajectory) of states and actions. A trajectory τ is defined as
the sequence

τ = {s1, a1, s2, a2, . . . , sT , aT }.
The probability distribution over trajectories induced by the policy and the environment dynamics is
given by

pθ(τ) = p(s1)

T∏
t=1

πθ(at | st) p(st+1 | st, at). (1)

The goal is to find the optimal policy parameters θ∗ that maximize the expected cumulative reward:

θ∗ = argmax
θ

Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]
. (2)

Here, r(st, at) is the immediate reward received at time step t, and the expectation is taken over the
distribution of trajectories pθ(τ).

3.2 Value Functions: Q and V

To evaluate the quality of a policy, two fundamental functions are defined:

State-Value Function V π: The state-value function represents the expected cumulative reward
starting from state st and following the policy π thereafter:

V π(st) = Eπ

[
T∑
t′=t

r(st′ , at′)

∣∣∣∣ st
]
. (3)

Action-Value Function Qπ: The action-value function represents the expected cumulative reward
starting from state st, taking action at, and then following the policy π:

Qπ(st, at) = r(st, at) + Eπ
[
V π(st+1)

∣∣ st, at] . (4)

Sometimes, the state-value function is also expressed in terms of Qπ as:

V π(st) = Eat∼π(at|st) [Q
π(st, at)] . (5)

3.3 Types of RL Algorithms

RL algorithms can be broadly classified into several categories, each with its own advantages and
challenges:

• Policy Gradient Methods: These methods directly optimize the policy πθ(a|s) by estimat-
ing gradients of the expected reward with respect to the policy parameters.

• Value-Based Methods: These methods learn the value function Qπ(s, a) (or V π(s)) and
derive a policy by acting greedily with respect to the value estimates. Examples include
Q-learning and Deep Q-Networks (DQN).

• Actor-Critic Methods: These methods combine policy gradient (actor) and value-based
(critic) approaches. The critic estimates the value function, which is then used to update the
actor.
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• Model-Based RL: These methods build a model of the environment dynamics. Model-based
methods can be subdivided into:

– Planning: Using optimal control or discrete planning techniques.
– Policy Improvement: Using the learned model to simulate experience and improve

the policy.
– Other Aspects: Incorporating ideas from dynamic programming or leveraging simu-

lated experience to boost sample efficiency.

3.3.1 Trade-offs

Different RL algorithms often involve trade-offs in several key areas:

• Sample Efficiency:
– Off-policy methods can reuse past experience to update the policy without generating

new samples from the current policy.
– On-policy methods require new data every time the policy is updated, which can be

less sample efficient.

• Stability: Ensuring stable learning is a major challenge in RL. Some methods (e.g., policy
gradients) can be sensitive to hyperparameters and the scale of rewards.

• Ease of Use: While supervised learning often benefits from straightforward gradient descent,
RL methods frequently need additional techniques (e.g., target networks, replay buffers, and
careful exploration strategies) to converge reliably.

3.3.2 Assumptions in RL

RL algorithms are typically designed under various assumptions about the environment and the
problem setup:

• Stochastic vs. Deterministic: The environment dynamics may be stochastic or determinis-
tic, which affects the design of the policy and value function estimators.

• Continuous vs. Discrete: The action and state spaces can be continuous or discrete,
influencing the choice of algorithm and function approximators.

• Episodic vs. Infinite Horizon: Problems may be episodic (with a clear terminal state) or
formulated over an infinite horizon, which affects the use of discount factors and convergence
criteria.

3.3.3 Sample Efficiency in RL

Sample efficiency is crucial for many RL applications:

• Off-policy Methods: These methods allow the algorithm to learn from previously collected
data, improving sample efficiency by reusing experiences.

• On-policy Methods: These require collecting new samples after every policy update, which
can be less efficient in terms of data usage.

3.3.4 Stability and Ease of Use

Unlike supervised learning, which almost always relies on gradient descent for optimization, RL
methods may not strictly use gradient descent due to issues such as:

• High variance in gradient estimates.

• The need for exploration, which can lead to unstable behavior.

• The complexity of the environment dynamics.

These factors contribute to challenges in achieving convergence and reliable performance in RL.
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In summary, reinforcement learning aims to optimize a policy to maximize expected cumulative
reward by interacting with an environment modeled as an MDP. The field includes a diverse set of
algorithms, each with different assumptions, trade-offs in sample efficiency, and stability. Under-
standing these fundamental aspects is crucial for selecting and designing RL methods for a given
application.
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4 Policy Gradient

In this section, we derive the policy gradient formulation from first principles. We begin with the
objective function and then show how to differentiate it using the log-derivative trick. We also discuss
practical issues such as variance reduction via causality and baselines, and finally outline extensions
to off-policy learning using importance sampling.

4.1 Objective Function

The goal in policy gradient methods is to find the optimal policy parameters θ∗ that maximize the
expected cumulative reward. A trajectory τ is defined as a sequence of states and actions:

τ = {s1, a1, s2, a2, . . . , sT , aT }.

The probability of a trajectory under the policy πθ and the dynamics of the environment is given by

pθ(τ) = p(s1)

T∏
t=1

πθ(at | st) p(st+1 | st, at). (6)

The overall objective is to maximize the expected total reward:

θ∗ = argmax
θ

Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]
, (7)

J(θ) = Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]
≈ 1

N

N∑
i=1

T∑
t=1

r(si,t, ai,t). (8)

Here, r(st, at) is the immediate reward, and the expectation is approximated using N sampled
trajectories.

4.2 Policy Differentiation

To optimize J(θ) with respect to the policy parameters θ, we differentiate the objective using the
log-derivative trick.

4.2.1 Log Derivative Trick

Consider the identity:

πθ(τ)∆ log πθ(τ) = πθ(τ)
∆πθ(τ)

πθ(τ)
= ∆πθ(τ). (9)

Since the trajectory probability can be written as:

πθ(τ) = πθ(s1, a1, . . . , sT , aT )

= p(s1)

T∏
t=1

πθ(at | st)p(st+1 | st, at), (10)

its logarithm becomes:

log πθ(τ) = log p(s1) +

T∑
t=1

log πθ(at | st) +
T∑
t=1

log p(st+1 | st, at). (11)

Noting that the environment dynamics p(st+1|st, at) and the initial state distribution p(s1) do not
depend on θ, differentiating with respect to θ yields:

∆θ log πθ(τ) =

T∑
t=1

∆θ log πθ(at | st). (12)

12



4.2.2 Differentiating the Objective Function

The objective function can be written as an integral over trajectories:

θ∗ = argmax
θ

∫
πθ(τ) r(τ) dτ, (13)

r(τ) =

T∑
t=1

r(st, at). (14)

Differentiating J(θ) with respect to θ gives:

∆θJ(θ) =

∫
∆θπθ(τ) r(τ) dτ

=

∫
πθ(τ)∆θ log πθ(τ) r(τ) dτ

= Eτ∼πθ
[∆θ log πθ(τ) r(τ)]

= Eτ∼πθ

[(
T∑
t=1

∆θ log πθ(at | st)

)(
T∑
t=1

r(st, at)

)]
. (15)

4.2.3 Evaluating the Policy Gradient

In practice, the policy gradient is estimated by sampling N trajectories:

∆θJ(θ) ≈
1

N

N∑
i=1

(
T∑
t=1

∆θ log πθ(ai,t | si,t)

)(
T∑
t=1

r(si,t, ai,t)

)
. (16)

The policy parameters are then updated using gradient ascent:

θ ← θ + α∆θJ(θ), (17)

where α is the learning rate.

4.3 REINFORCE Algorithm

The REINFORCE algorithm is a Monte Carlo policy gradient method that directly implements the
above gradient estimation procedure:

1. Sample Trajectories: Generate N episodes τ i by running the policy πθ in the environment.

2. Compute Gradient Estimate: Estimate the gradient:

∆θJ(θ) ≈
N∑
i=1

(
T∑
t=1

∆θ log πθ(ai,t | si,t)

)(
T∑
t=1

r(si,t, ai,t)

)
.

3. Update Parameters: Update θ using the gradient estimate:

θ ← θ + α∆θJ(θ).

4.3.1 Policy Gradient Estimator and Variance Reduction

A compact form of the policy gradient estimator is:

∆θJ(θ) ≈
1

N

N∑
i=1

∆θ log πθ(τ
i) r(τ i). (18)

However, this estimator can have high variance. Two common techniques are used to reduce variance:
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Causality: Since an action at time t′ cannot affect rewards obtained at times t < t′, we can refine
the estimator as:

∆θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)

(
T∑
t′=t

r(si,t′ , ai,t′)

)

=
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t) Q̂i,t, (19)

where Q̂i,t is an estimate of the cumulative reward (or return) starting from time t.

Baseline: A baseline b can be subtracted from the return to reduce variance without introducing
bias:

∆θJ(θ) ≈
1

N

N∑
i=1

∆θ log πθ(τ
i) [r(τ i)− b]. (20)

A simple choice is to use the average return over the batch:

b =
1

N

N∑
i=1

r(τ i). (21)

Proof that baseline does not introduce bias:

E [∆θ log πθ(τ) b] =

∫
πθ(τ)∆θ log πθ(τ) b dτ

= b∆θ

∫
πθ(τ) dτ

= b∆θ1

= 0. (22)

An optimal baseline that minimizes variance is given by

b =
E
[
g(τ)2e(τ)

]
E [g(τ)2]

,

but in practice, the sample mean is often used due to its simplicity.

Note: Policy gradient methods are on-policy algorithms, meaning that they require samples generated
by the current policy.

4.4 Off-Policy Learning & Importance Sampling

In some settings, it is desirable to learn from data generated by a behavior policy π̄(τ) that is different
from the target policy πθ(τ). The objective can be rewritten using importance sampling:

J(θ) = Eτ∼πθ(τ) [r(τ)]

= Eτ∼π̄(τ)
[
πθ(τ)

π̄(τ)
r(τ)

]
. (23)

Since

πθ(τ) = p(s1)

T∏
t=1

πθ(at|st) p(st+1|st, at), (24)

πθ(τ)

π̄(τ)
=

∏T
t=1 πθ(at|st)∏T
t=1 π̄(at|st)

, (25)
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we can express the off-policy gradient as:

∆θ′J(θ
′) = Eτ∼πθ(τ)

[
πθ′(τ)

πθ(τ)
∆θ′ log πθ′(τ) r(τ)

]
. (26)

This formulation requires careful handling of the state distribution ratios. In practice, a common
workaround is to treat the ratio pθ′ (st)

pθ(st)
as approximately constant or bounded, leading to methods

such as TPRO.

For practical implementation, one can define a “pseudo-loss” that is equivalent to weighted maximum
likelihood:

J̄(θ) =
1

N

N∑
i=1

T∑
t=1

log πθ(ai,t|si,t) Q̂i,t, (27)

which can then be differentiated automatically.

4.5 Policy Gradient in Practice

Practical implementation of policy gradient methods comes with several challenges:

• High Variance: The gradient estimates are typically noisy compared to those in supervised
learning. This motivates the use of large batches, variance reduction techniques (such as
causality and baselines), and careful tuning of hyperparameters.

• Learning Rate Sensitivity: Choosing an appropriate learning rate is critical. Adaptive
methods such as ADAM are commonly used, though policy gradient-specific adjustments
may also be beneficial.

In summary, the policy gradient method leverages the log derivative trick to obtain an unbiased
estimator of the gradient of the expected return. Variance reduction strategies, such as using causality
and baselines, are crucial for practical success. Extensions to off-policy learning via importance
sampling enable the reuse of data generated by different policies, albeit with additional considerations.
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5 Actor-Critic Method

The Actor-Critic method is a popular approach in reinforcement learning that combines ideas from
policy gradient (actor) methods with value function (critic) estimation. The actor is responsible for
learning the policy πθ(a | s), while the critic estimates the value function V π(s) (or action-value
function Qπ(s, a)). This combination helps to reduce the high variance associated with pure policy
gradient methods while still maintaining the flexibility of learning a stochastic policy.

5.1 Basics and Recap of Policy Gradient

Recall that the basic policy gradient estimator is given by:

∆θJ(θ) ≈
1

N

N∑
i=1

(
T∑
t=1

∆θ log πθ(ai,t | si,t)

)(
T∑
t=1

r(si,t, ai,t)

)
(28)

≈ 1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)

(
T∑
t′=t

r(si,t′ , ai,t′)

)
(29)

=
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t) Q̂i,t, (30)

where Q̂i,t is an unbiased sample return computed from trajectories but typically suffers from high
variance.

One way to reduce the variance is to use the expected cumulative reward from time t onwards:

Q̂i,t ≈
T∑
t′=t

Eπθ

[
r(st′ , at′) | st, at

]
. (31)

We then define the value function as:

Q̂i,t =

T∑
t′=t

Eπθ

[
r(st′ , at′) | st, at

]
, (32)

V (st) = Eat∼π(·|st)

[
Q(st, at)

]
. (33)

Substituting the value function into the gradient estimate leads to:

∆θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)
(
Q(si,t, ai,t)− V (si,t)

)
. (34)

Advantage Function

The advantage function is defined as:

Aπ(st, at) = Qπ(st, at)− V π(st), (35)

so that the policy gradient becomes:

∆θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)Aπ(si,t, ai,t). (36)

A more accurate (or lower-variance) estimate of Aπ(st, at) leads to more efficient learning.

Value Function Fitting

The action-value function satisfies the Bellman equation:

Qπ(st, at) = r(st, at) + Est+1∼p(·|st,at)

[
V π(st+1)

]
. (37)
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A common approximation is to use a one-step bootstrapped estimate:

Qπ(st, at) ≈ r(st, at) + V π(st+1). (38)

Thus, the advantage function can be approximated as:

Aπ(st, at) ≈ r(st, at) + V π(st+1)− V π(st). (39)

With this approximation, only the value function V π(s) needs to be estimated accurately.

Policy Evaluation

The state-value function under policy π is given by:

V π(st) =

T∑
t′=t

Eπθ

[
r(st′ , at′) | st

]
, (40)

J(θ) = Es1∼p(s1)

[
V π(s1)

]
. (41)

In Monte Carlo policy evaluation, one might approximate:

V π(st) ≈
T∑
t′=t

r(st′ , at′), (42)

or, if possible, average over multiple rollouts:

V π(st) ≈
1

N

N∑
i=1

T∑
t′=t

r(st′ , at′). (43)

With function approximation, we use supervised regression to fit the value function:

L =
1

2

∑
i

∥∥∥V̂ πϕ (si)− yi
∥∥∥2, (44)

where the target yi can be set either as the Monte Carlo return,

yi,t =

T∑
t′=t

r(si,t′ , ai,t′),

or using a bootstrapped target:

yi,t ≈ r(si,t, ai,t) + V̂ πϕ (si,t+1).

5.2 Actor-Critic Algorithm

The actor-critic algorithm combines the policy gradient (actor) with value function estimation (critic).
A typical batch actor-critic algorithm proceeds as follows:

1. Data Collection: Sample a batch of state-action pairs {(si, ai)} by running the current
policy πθ(a | s).

2. Critic Update: Fit the value function V̂ πϕ (s) using the sampled data. For example, use a
target computed either via Monte Carlo returns or using a bootstrapped one-step target:

yi ≈ r(si, ai) + γ V̂ πϕ (s′i).

The loss for the value function is:

L =
1

2

∑
i

∥∥∥V̂ πϕ (si)− yi
∥∥∥2 .

3. Advantage Estimation: Compute the advantage estimate for each sample:

Âπ(si, ai) = r(si, ai) + γ V̂ πϕ (s′i)− V̂ πϕ (si).
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4. Actor Update: Compute the policy gradient:

∆θJ(θ) ≈
∑
i

∆θ log πθ(ai | si) Âπ(si, ai),

and update the policy parameters:
θ ← θ + α∆θJ(θ).

For online (step-by-step) actor-critic, the update is applied at each time step:

1. Take action a ∼ πθ(a | s) and observe the transition (s, a, s′, r).

2. Update the critic using the target r + γ V̂ πϕ (s′).

3. Compute the advantage:

Âπ(s, a) = r + γ V̂ πϕ (s′)− V̂ πϕ (s).

4. Update the actor using:

∆θJ(θ) ≈ ∆θ log πθ(a | s) Âπ(s, a),
and set θ ← θ + α∆θJ(θ).

5.3 Discount Factors

When the episode length T is infinite, the value function can diverge. To address this, a discount
factor γ ∈ [0, 1] is introduced to prioritize immediate rewards:

V π(si,t) ≈ r(si,t, ai,t) + γ V̂ πϕ (si,t+1). (45)
The discounted policy gradient becomes:

∆θJ(θ) =
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)

(
T∑
t′=t

γt
′−tr(si,t′ , ai,t′)

)
. (46)

5.4 Architecture Design

Network Architecture:

• Separate Networks: The value network (critic) and policy network (actor) can be im-
plemented as separate networks, which has been observed to be more stable and sample
efficient.

• Shared Features: Alternatively, some architectures share lower-level features between the
actor and critic, while using separate output layers.

Batch updates generally yield better performance in actor-critic algorithms.

5.5 Trade-off and Balance

There is a trade-off between the unbiased nature of pure policy gradient methods (which have high
variance) and the lower-variance but slightly biased actor-critic methods. For instance:

Policy Gradient:

∆θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)

(
T∑
t′=t

γt
′−tr(si,t′ , ai,t′)− b

)
. (47)

Actor-Critic:

∆θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)
(
r(si, ai) + V̂ πϕ (s′i)− V̂ πϕ (si)

)
. (48)

Using the critic as a state-dependent baseline typically leads to lower variance:

∆θJ(θ) ≈
1

N

N∑
i=1

T∑
t=1

∆θ log πθ(ai,t | si,t)

( ∞∑
t′=t

γt
′−tr(si,t′ , ai,t′)− V̂ πϕ (si,t)

)
. (49)
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5.6 Eligibility Traces & n-Step Returns

To further reduce variance and better trade off bias and variance, multi-step returns and eligibility
traces can be used.

n-Step Returns:

Âπn(st, at) =

t+n∑
t′=t

γt
′−tr(st′ , at′) + γn V̂ πϕ (st+n)− V̂ πϕ (st). (50)

Using n > 1 often yields better empirical performance.

Generalized Advantage Estimation (GAE): GAE combines multiple-step returns by weighting
them with a factor λ (typically λ = 0.95). The advantage is computed as:

ÂπGAE(st, at) =

∞∑
t′=t

(γλ) t
′−t δt′ , (51)

δt′ = r(st′ , at′) + γ V̂ πϕ (st′+1)− V̂ πϕ (st′). (52)

This approach provides a flexible trade-off between bias and variance by effectively combining
information over multiple time scales.

In summary, the Actor-Critic method leverages the strengths of both policy gradient and value
function estimation. By using the critic as a baseline (or even a more refined estimator such as with
GAE), actor-critic methods achieve lower-variance gradient estimates, leading to more stable and
efficient learning.
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6 Value Based Methods

Value based methods estimate a value function, such as the action-value function Q(s, a) or the
state-value function V (s), and use these estimates to select actions. In many cases, the best action at
state st is given by:

argmax
at

Aπ(st, at),

which is equivalent to
argmax

at

Qπ(st, at).

A greedy policy induced by these estimates is then:

π′(at | st) =

{
1, if at = argmax

at

Aπ(st, at)

0, otherwise.

This deterministic policy is at least as good as any stochastic policy at ∼ π(at | st) when following
π.

6.1 Policy Iteration

A common framework for value based methods is policy iteration, which alternates between two
steps:

1. Policy Evaluation: Estimate the value function Aπ(s, a) (or Qπ(s, a) and V π(s)) under
the current policy π.

2. Policy Improvement: Update the policy by acting greedily with respect to the estimated
value function:

π′(at | st) =

{
1, if at = argmax

at

Aπ(st, at)

0, otherwise.
Then, set π ← π′ and repeat.

6.2 Dynamic Programming

When the dynamics p(s′ | s, a) are known and the state and action spaces are discrete (and small),
dynamic programming methods can be applied. The bootstrapped update for the value function is
given by:

V π(s)← Ea∼π(a|s)

[
r(s, a) + γ Es′∼p(s′|s,a)

[
V π(s′)

]]
.

For a deterministic policy π(s) = a, this simplifies to:
V π(s)← r(s, π(s)) + γ Es′∼p(s′|s,π(s))

[
V π(s′)

]
.

Recall that:
Qπ(s, a) = r(s, a) + γ E

[
V π(s′)

]
,

and therefore,
argmax

at

Aπ(st, at) = argmax
at

Qπ(st, at).

The overall policy iteration process becomes:

1. Compute or update Qπ(s, a)← r(s, a) + γ E
[
V π(s′)

]
.

2. Update the state-value function: V (s)← maxaQ(s, a).

6.3 Function Approximators

In many practical problems, the state and/or action spaces are too large or continuous for tabular
methods. In these cases, function approximators (such as neural networks) are used. For example,
one can minimize the loss:

L =
1

2

∑
i

∥∥∥Vϕ(si)−max
a

Q(si, a)
∥∥∥2,

to train a value function approximator Vϕ(s).
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6.3.1 Fitted Value Iteration

The fitted value iteration algorithm iteratively updates the value function using a batch of data:

1. For each sample si, compute the target:

yi ← max
ai

(
r(si | ai) + γ E

[
Vϕ(s

′
i)
])
.

2. Update the parameters by minimizing the squared error:

ϕ← argmin
ϕ

1

2

∑
i

∥∥∥Vϕ(si)− yi∥∥∥2.
When the dynamics are unknown, one may instead focus on learning the Q-function.

6.3.2 Fitted Q-Iteration

Fitted Q-Iteration is a batch method for learning the Q-function. The algorithm proceeds as follows:

1. Data Collection: Collect a dataset {(si, ai, s′i, ri)} using a given policy.
2. Target Computation: For each sample, compute the target:

yi ← r(si, ai) + γ max
a′i

Qϕ(s
′
i, a

′
i).

3. Function Approximation: Update the parameters by minimizing:

ϕ← argmin
ϕ

1

2

∑
i

∥∥∥Qϕ(si, ai)− yi∥∥∥2.
Repeat the target computation and parameter update for k iterations before collecting new data.

6.4 Exploration Strategies

Since value based methods rely on accurate estimation of Q(s, a), effective exploration is crucial.
Common strategies include:

1. Epsilon-Greedy: With probability 1 − ϵ, choose the action with the highest estimated
Q-value, and with probability ϵ, choose an action uniformly at random:

π(at | st) =

{
1− ϵ, if at = argmaxQϕ(st, at),
ϵ

|A|−1 , otherwise.

2. Boltzmann Exploration: Choose actions probabilistically according to the softmax of
Q-values:

π(at | st) ∝ exp
(
Qϕ(st, at)

)
.

6.5 Value Function Learning Theory

In the tabular case, the standard Bellman updates converge. The basic process is:

1. Update Q(s, a) via:
Q(s, a)← r(s, a) + γ E

[
V (s′)

]
.

2. Update V (s) as:
V (s)← max

a
Q(s, a).

However, when using function approximation or in non-tabular cases, convergence is not guaranteed.
Actor-critic methods that use bootstrapped estimates of V or Q inherit these challenges.
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7 Practical Q-learning

In practical applications, online Q-learning suffers from several issues:

• It is not a true gradient descent method, as it does not compute the gradient of the target
Q-value in y.

• The samples are often assumed to be independent and identically distributed (i.i.d.), which
is not true for sequential data.

7.1 Replay Buffer

A replay buffer B stores past experiences so that each sample can be used multiple times. The
procedure is:

1. Data Collection: Collect dataset {(si, ai, s′i, ri)} using some behavior policy, and add it to
B.

2. Batch Update:
(a) Sample a mini-batch (si, ai, s

′
i, ri) from B.

(b) Update the Q-network parameters ϕ using:

ϕ← ϕ− α
∑
i

∂Qϕ(si, ai)

∂ϕ
· 1
2

(
Qϕ(si, ai)−

[
r(si, ai) + γmax

a′i

Qϕ(s
′
i, a

′
i)
])2

.

Repeat these updates k times.

7.2 Target Network

The target network helps to stabilize learning by decoupling the target y from the rapidly changing
Q-network:

1. Maintain a target network with parameters ϕ′ that is periodically updated from ϕ, e.g.,
ϕ′ ← ϕ.

2. Use the target network to compute the target:

yi = r(si, ai) + γmax
a′i

Qϕ′(s′i, a
′
i).

3. Perform several mini-batch updates with the current replay buffer.

An alternative is to use Polyak averaging (soft updates):

ϕ′ ← τϕ′ + (1− τ)ϕ, with τ close to 1 (e.g., τ = 0.999).

7.3 Double Q-learning

One common problem with Q-learning is overestimation of the Q-values due to the maximum
operator. The target in standard Q-learning is:

y = r + γ Qϕ′

(
s′, argmax

a′
Qϕ′(s′, a′)

)
.

This uses the same network to select and evaluate the action, which can amplify estimation noise.

Double Q-learning addresses this by decoupling the action selection and evaluation:

y = r + γ Qϕ′

(
s′, argmax

a′
Qϕ(s

′, a′)
)
.

Here, the current network Qϕ is used to choose the action while the target network Qϕ′ evaluates it.
Alternatively, one can maintain two separate networks QϕA

and QϕB
:

QϕA
← r + γ QϕB

(
s′, argmax

a′
QϕA

(s′, a′)
)
,

QϕB
← r + γ QϕA

(
s′, argmax

a′
QϕB

(s′, a′)
)
.
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7.4 Multi-step Returns

Instead of using one-step returns, multi-step returns can provide a better trade-off between bias and
variance. A typical n-step return is:

yj,t =

t+N−1∑
t′=t

rj,t′ + γN max
a

Qϕ′

(
sj,t+N , a

)
.

Strictly speaking, multi-step returns are correct for on-policy data. When using off-policy data, one
might:

1. Ignore the discrepancy if N is small.
2. Dynamically choose N such that the data remains mostly on-policy.
3. Use importance sampling corrections (see, e.g., "Safe and Efficient Off-Policy Reinforce-

ment Learning" by Munos et al. (2016)).

7.5 Q-learning with Continuous Actions

In continuous action spaces, performing the argmax over actions is nontrivial. Several approaches
are used:

1. Optimization Methods:
• Use gradient-based optimization (e.g., SGD) in the inner loop, though it may be slow.
• For low-dimensional action spaces, sample a discrete set of actions:

max
a

Q(s, a) ≈ max{Q(s, a1), . . . , Q(s, aN )}.

• More advanced methods include the cross-entropy method (CEM) or CMA-ES.
2. Structured Function Classes: Use a quadratic form for Q-values:

Qϕ(s, a) = −
1

2
(a− µϕ(s))TPϕ(s)(a− µϕ(s)) + Vϕ(s).

In this case,

argmax
a

Qϕ(s, a) = µϕ(s) and max
a

Q(s, a) = Vϕ(s).

This method, known as Normalized Advantage Functions (NAF), limits representational
power but simplifies optimization.

3. Actor-Critic for Continuous Actions (DDPG): Learn an approximate maximizer by
training a separate policy network µθ(s) such that:

µθ(s) ≈ argmax
a

Qϕ(s, a).

The network µθ(s) is updated by solving:

θ ← argmax
θ

Qϕ

(
s, µθ(s)

)
,

with gradients given by:
∂Qϕ
∂θ

=
∂µθ(s)

∂θ

∂Qϕ
∂a

.

This approach is the basis of the Deep Deterministic Policy Gradient (DDPG) algorithm.

7.6 Tips for Q-learning

Practical tips for successful Q-learning include:

• Gradient Clipping or Huber Loss: The Bellman error can produce large gradients. Clip
gradients or use the Huber loss:

L(x) =

{
x2

2 , if |x| ≤ δ,
δ|x| − δ2

2 , otherwise.
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• Double Q-learning: Incorporate double Q-learning to reduce overestimation bias.
• Multi-step Returns: Use n-step returns to balance bias and variance.
• Exploration and Learning Rate Scheduling: Gradually reduce exploration (e.g., decrease
ϵ) and adjust learning rates over time. Optimizers like Adam can help.

• Multiple Random Seeds: Due to high variability, run experiments with multiple seeds.
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8 Advanced Policy Gradients

This note explains advanced topics in policy gradient methods. We first review the basic REINFORCE
algorithm and the policy gradient theorem. Next, we derive a surrogate objective using importance
sampling to enable off-policy evaluation. We then explain how to bound the objective to ensure that
policy updates yield performance improvements and finally discuss constrained optimization methods
that lead to practical algorithms such as TRPO and PPO.

8.1 Recap: Policy Gradient and the REINFORCE Algorithm

8.1.1 Policy Gradient Objective

The goal in reinforcement learning is to maximize the expected return:

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtr(st, at)

]
,

where τ denotes a trajectory and πθ is the policy parameterized by θ.

The policy gradient theorem states that:

∇θJ(θ) = Eτ∼pθ(τ)

[
T∑
t=0

∇θ log πθ(at | st)Qπθ (st, at)

]
.

In practice, it is common to use the advantage function

Aπθ (st, at) = Qπθ (st, at)− V πθ (st)

to reduce the variance of the gradient estimator.

8.1.2 REINFORCE Algorithm

The REINFORCE algorithm is a simple Monte Carlo method that implements policy gradients:

1. Sampling: Run the current policy πθ to sample trajectories {τ i}.
2. Gradient Estimation: Estimate the policy gradient:

∆θJ(θ) ≈
∑
i

(
T∑
t=1

∇θ log πθ(ait | sit)

(
T∑
t′=t

r(st′ , at′)

))
.

3. Parameter Update: Update the policy parameters:

θ ← θ + α∆θJ(θ).

This method works because policy gradient methods can be seen as a type of policy iteration where
we improve the policy based on its own performance estimates.

8.1.3 Performance Improvement via the Advantage Function

A key result is that the difference in performance between a new policy πθ′ and the current policy πθ
can be expressed as:

J(θ′)− J(θ) = Eτ∼pθ′ (τ)

[ ∞∑
t=0

γtAπθ (st, at)

]
. (53)

The derivation (omitted here for brevity) relies on telescoping sums and the definition of the value
function. The intuition is that if actions taken by the new policy have positive advantages under the
old policy, then the new policy will yield a higher return.
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8.2 Deriving the Surrogate Objective via Importance Sampling

8.2.1 Need for Off-Policy Estimation

In practice, it is desirable to use data collected from the current policy πθ to evaluate the effect
of a potential update πθ′ . However, Equation (53) is expressed as an expectation over trajectories
generated by πθ′ . To address this, we use importance sampling.

8.2.2 Importance Sampling Rewriting

For any function f(s, a), we can rewrite the expectation under πθ′ in terms of πθ:

Ea∼πθ′ (·|s)[f(s, a)] = Ea∼πθ(·|s)

[
πθ′(a|s)
πθ(a|s)

f(s, a)

]
.

Applying this to the performance difference, we have:

Eτ∼pθ′ (τ)

[ ∞∑
t=0

γtAπθ (st, at)

]
=

∞∑
t=0

Est∼pθ′ (st)
[
Eat∼πθ′ (at|st)

[
γtAπθ (st, at)

]]
=

∞∑
t=0

Est∼pθ′ (st)
[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
.

(54)

The ratio

r(s, a) =
πθ′(a|s)
πθ(a|s)

is called the importance sampling ratio.

8.2.3 Approximating the State Distribution

The expression in Equation (54) still samples states from pθ′(st) (the state distribution under the new
policy). However, if πθ′ is close to πθ, we approximate:

pθ′(st) ≈ pθ(st).

This approximation allows us to form a surrogate objective that can be computed using data from the
current policy:

L(θ′) =

∞∑
t=0

Est∼pθ(st)
[
Eat∼πθ(at|st)

[
r(st, at) γ

tAπθ (st, at)
]]
.

Maximizing L(θ′) approximately maximizes the performance improvement J(θ′)− J(θ) (up to a
constant factor).

8.3 Bounding the Objective and Enforcing a Trust Region

8.3.1 Motivation for Bounding

The above derivation relies on the assumption that πθ′ is close to πθ. To formalize this, we assume
that for all st:

|πθ′(at | st)− πθ(at | st)| ≤ ϵ.
Under this assumption, one can show that the difference in state distributions satisfies:

|pθ′(st)− pθ(st)| ≤ 2ϵ t.

Thus, a small deviation in the policy leads to a controlled deviation in the state visitation distribution.
More precisely, for any function f(st):

Epθ′ [f(st)] ≥ Epθ [f(st)]− 2ϵ t max
st

f(st). (55)
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8.3.2 Bounding with KL Divergence

It is often more convenient to bound the change in the policy using the Kullback-Leibler (KL)
divergence:

DKL

(
πθ′(at | st) ∥πθ(at | st)

)
= Eat∼πθ′ (at|st)

[
log

πθ′(at | st)
πθ(at | st)

]
.

A useful inequality shows that:

|πθ′(at | st)− πθ(at | st)| ≤
√

1

2
DKL

(
πθ′(at | st) ∥πθ(at | st)

)
.

Thus, rather than enforcing a hard bound ϵ on the policy difference, we can impose a KL divergence
constraint:

DKL

(
πθ′(at | st) ∥πθ(at | st)

)
≤ ϵ.

This constraint is more natural when working with probability distributions.

8.3.3 The Final Constrained Surrogate Objective

Combining the importance sampling approximation and the KL bound, the surrogate optimization
becomes:

θ′ ← argmax
θ′

L(θ′) subject to DKL

(
πθ′(at | st) ∥πθ(at | st)

)
≤ ϵ,

where

L(θ′) =

∞∑
t=0

Est∼pθ(st)
[
Eat∼πθ(at|st)

[
πθ′(at | st)
πθ(at | st)

γtAπθ (st, at)

]]
.

For sufficiently small ϵ, the surrogate objective guarantees that J(θ′) > J(θ).

8.4 Solving the Constrained Optimization Problem

There are several methods to solve the above constrained problem. We describe two approaches: dual
gradient descent and the natural gradient method.

8.4.1 Dual Gradient Descent

To enforce the KL constraint, we form the Lagrangian:

L(θ′, λ) = L(θ′)− λ
(
DKL

(
πθ′(at | st) ∥πθ(at | st)

)
− ϵ
)
.

The optimization then proceeds in two steps:

1. Maximization Step: For a fixed λ, maximize L(θ′, λ) with respect to θ′.

2. Dual Update: Update the multiplier λ by

λ← λ+ α
(
DKL

(
πθ′(at | st) ∥πθ(at | st)

)
− ϵ
)
.

This method ensures that the KL constraint is gradually enforced during optimization.

8.4.2 Natural Gradient and Second-Order Approximation

An alternative is to use a first-order Taylor expansion of the surrogate objective around θ. Define

Ā(θ′) =
∑
t

Est∼pθ(st)
[
Eat∼πθ(at|st)

[
πθ′(at | st)
πθ(at | st)

γtAπθ (st, at)

]]
, (56)

Ā(θ) =
∑
t

Est∼pθ(st)
[
Eat∼πθ(at|st)

[
γtAπθ (st, at)

]]
. (57)
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A first-order expansion leads to:
θ′ ← argmax

θ′
∇θĀ(θ)T (θ′ − θ)

subject to
DKL

(
πθ′ ∥πθ

)
≤ ϵ.

To solve the constrained problem, a second-order Taylor expansion of the KL divergence is used:

DKL(πθ′ ∥πθ) ≈
1

2
(θ′ − θ)TF(θ′ − θ),

where F is the Fisher information matrix:
F = Eπθ

[
∇θ log πθ(a | s)∇θ log πθ(a | s)T

]
.

This leads to the natural gradient update:
θ′ = θ + αF−1∇θJ(θ),

with the step size chosen as

α =

√
2ϵ

∇θJ(θ)TF∇θJ(θ)
.

This update ensures that the KL constraint is satisfied and is a key idea behind Trust Region Policy
Optimization (TRPO).

8.5 Practical Methods and Summary
• Natural Policy Gradient:

θ′ = θ + αF−1∇θJ(θ).
This method stabilizes training by taking into account the geometry of the policy space.

• Trust Region Policy Optimization (TRPO): TRPO uses the above natural gradient idea
together with a line search to enforce the KL constraint:

DKL

(
πθ′ ∥πθ

)
≤ ϵ.

• Proximal Policy Optimization (PPO): Instead of using a hard KL constraint, PPO uses
a clipped surrogate objective that limits the change in the policy ratio r(s, a), yielding a
similar effect in a simpler implementation.

8.6 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy gradient method designed to achieve reliable and
stable improvements in policy updates while avoiding the complexities of second-order optimization
techniques. It introduces a clipped surrogate objective to restrict large updates and maintain the new
policy within a “proximal” region of the old policy.

8.6.1 Clipped Surrogate Objective

The key idea in PPO is to modify the standard policy gradient objective by incorporating an importance
sampling ratio and then clipping this ratio to limit policy updates. Define the probability ratio between
the new policy πθ and the old policy πθold at time step t as

rt(θ) =
πθ(at | st)
πθold(at | st)

.

The unclipped surrogate objective (or likelihood ratio objective) is given by

LPG(θ) = Et
[
rt(θ) Ât

]
,

where Ât is an estimator of the advantage function at time t.

To prevent excessively large policy updates, PPO employs a clipping mechanism:

LCLIP(θ) = Et
[
min

(
rt(θ) Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
,

with ϵ as a hyperparameter (typically around 0.1 or 0.2). The clipping function truncates the ratio so
that it remains within the interval [1− ϵ, 1 + ϵ].
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Intuition:

• When Ât > 0 (indicating that action at is better than average), increasing rt(θ) above 1 + ϵ
will not yield further improvement, as the term is capped.

• When Ât < 0 (indicating that action at is worse than average), reducing rt(θ) below 1− ϵ
is similarly capped.

8.6.2 Additional Objective Terms

In practice, PPO is often implemented in an actor-critic framework, where the following additional
terms are included:

• Value Function Loss: To fit the value function Vθ(s), a mean-squared error loss is used:

LVF(θ) = Et
[(
Vθ(st)− V target

t

)2]
,

where V target
t is the target return (often computed via GAE).

• Entropy Bonus: An entropy term encourages exploration by preventing premature conver-
gence:

LS(θ) = Et
[
H
(
πθ(· | st)

)]
.

8.6.3 Final PPO Objective and Optimization Procedure

The overall PPO objective is a weighted combination of the clipped surrogate objective, the value
function loss, and the entropy bonus:

LPPO(θ) = Et

[
LCLIP(θ)− c1 LVF(θ) + c2 L

S(θ)

]
,

where c1 and c2 are hyperparameters balancing the value loss and the entropy bonus.

The optimization procedure typically follows these steps:

1. Collect Data: Use the current policy πθold to generate trajectories.

2. Compute Advantages: Estimate the advantages Ât (e.g., via GAE).

3. Optimize: Perform several epochs of stochastic gradient ascent on LPPO(θ) using mini-
batches.

4. Update Policy: Set θold ← θ and repeat.

8.7 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) optimizes policies directly using human preference data
without training a separate reward model. Instead of performing multi-step RL updates, DPO
leverages a reparameterization trick to derive the policy update in closed form.

8.7.1 KL-Constrained Reward Maximization

In many policy optimization settings, the objective is to maximize expected reward while constraining
the new policy to remain close to a reference policy. This can be formulated as:

max
π

Ex∼D
[
Ey∼π(·|x)[r(x, y)]− β DKL

(
π(· | x) ∥πref(· | x)

)]
.

The optimal solution to this problem is known to have the form:

π∗(y | x) ∝ πref(y | x) exp
(
r(x, y)

)
.

In words, the new policy is a reweighted version of the reference policy, with weights given by the
exponentiated reward.
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8.7.2 The Reparameterization Trick

Rather than learning an explicit reward function r∗(x, y), DPO reparameterizes the reward as the
log-ratio between the new and reference policies. Taking logarithms of the optimal policy form:

log π∗(y | x) = log πref(y | x) + r(x, y) + const,

we rearrange to obtain:

r(x, y) = log π∗(y | x)− log πref(y | x) + const.

Assuming πθ ≈ π∗, we define:

r(x, y) = β log
πθ(y | x)
πref(y | x)

,

where β is a scaling factor.

8.7.3 DPO Loss Function

Under the Bradley-Terry model, the probability that a preferred output yw is chosen over a dispreferred
output yl for a prompt x is given by:

p∗(yw ≻ yl | x) =
exp
(
r(x, yw)

)
exp
(
r(x, yw)

)
+ exp

(
r(x, yl)

) .
Substituting our reparameterized reward, we obtain:

p∗(yw ≻ yl | x) =
1

1 + exp
(
β log πθ(yl|x)

πθ(yw|x) − β log
πref (yl|x)
πref (yw|x)

) .
Taking the negative log-likelihood over a dataset D = {(x, yw, yl)} leads to the DPO loss:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πθ(yl | x)

− β log πref(yw | x)
πref(yl | x)

)]
,

where σ(u) = 1
1+e−u is the sigmoid function.

8.7.4 Optimization and Benefits

The policy πθ is optimized by minimizing the DPO loss using gradient descent. This approach
directly adjusts the policy so that preferred outputs become more likely relative to dispreferred ones,
all without training a separate reward network. Key benefits include:

• No explicit reward model: The reparameterization allows direct policy optimization.

• Stability: Being a single-step, supervised-like update, DPO avoids multi-step RL instabili-
ties.

• Simplicity: The loss is a straightforward logistic (binary cross-entropy) loss over preference
pairs.

Summary: DPO leverages a KL-constrained reward framework to express the optimal policy as
proportional to the reference policy times an exponential reward. Reparameterizing the reward in
terms of the log-ratio log πθ

πref
yields a loss that directly uses preference data to update the policy.

8.8 Group Relative Policy Optimization (GRPO) – Detailed Explanation

Group Relative Policy Optimization (GRPO) is designed to further improve policy learning by
eliminating the need for a critic network. Instead of computing a value estimate for each action via a
critic, GRPO computes the advantage directly from a group of candidate outputs, using group-based
normalization as a baseline.
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Key Features of GRPO

1. Elimination of the Critic Model: Whereas traditional methods like PPO require a critic to
estimate the value function, GRPO uses a group of candidate outputs from the old policy
(e.g., πθold ) to compute a baseline. This reduces computational overhead.

2. Group-Based Advantage Computation: For a given context (or query) q, suppose we
sample a group of responses {o1, o2, . . . , oG}. For each response oi, a reward ri is obtained
(via human feedback or a surrogate model). The advantage for each output is computed
relative to the group by normalizing:

Ai =
ri −mean{r1, r2, . . . , rG}

std{r1, r2, . . . , rG}
.

This group-based baseline acts similarly to a critic, but without training an extra network.
3. Optimization Objective: The policy πθ(y | x) is updated to increase the probability of

actions with higher relative advantage. A schematic form of the GRPO objective is:

JGRPO(θ) = Eq∼P (Q), {oi}G
i=1∼πθold (·|q)

[
1

G

G∑
i=1

min

(
πθ(oi | q)
πθold(oi | q)

Ai,

clip
( πθ(oi | q)
πθold(oi | q)

, 1− ϵ, 1 + ϵ
)
Ai

)

− β DKL

(
πθ(· | q) ∥πref(· | q)

)]
.

Here:
• The ratio πθ(oi|q)

πθold (oi|q)
modifies the old policy’s probabilities.

• Clipping (with parameter ϵ) prevents excessive updates.
• The KL divergence term (with weight β) ensures that the new policy remains close to a

reference policy.

Advantages of GRPO

• No Critic Required: This reduces complexity by avoiding a separate value function
network.

• Stable Advantage Estimation: Group-based normalization yields a reliable baseline.
• Efficient Policy Updates: Relative scoring among a group of outputs leads to more robust

updates.
• Built-in Stability: Ratio clipping and KL regularization prevent drastic policy shifts.

8.9 Comparison of PPO, DPO, and GRPO

Proximal Policy Optimization (PPO):

• Approach: A multi-step, actor-critic method that uses importance sampling, a separate
critic network, and ratio clipping to ensure stable policy updates.

• Strengths: Robust and widely used in multi-step MDPs.
• Weaknesses: Requires training both an actor and a critic, which increases complexity and

computational cost.

Direct Preference Optimization (DPO):

• Approach: Optimizes the policy directly using human preference data by reparameterizing
the reward as

r(x, y) = β log
πθ(y | x)
πref(y | x)

,

and applying a binary cross-entropy loss over pairwise comparisons.
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• Strengths: Simpler and avoids multi-step RL instabilities by using a supervised-like update.
• Weaknesses: Being a single-step or bandit-style method, it may not capture long-term

temporal dependencies.

Group Relative Policy Optimization (GRPO):

• Approach: Extends DPO by considering a group of candidate outputs rather than single
pairwise comparisons. It computes a group-based baseline and normalized advantages, then
updates the policy using a PPO-style objective with ratio clipping and KL regularization.

• Strengths: Reduces variance by aggregating preference signals across multiple outputs,
yielding more robust updates.

• Weaknesses: As a single-step method, it still may not fully account for multi-step dynamics,
though it improves stability over DPO.

Overall Comparison:

• PPO is designed for full MDPs with multi-step temporal credit assignment and requires
both actor and critic.

• DPO simplifies the process by directly optimizing on pairwise human preferences, thereby
removing the need for an explicit reward model or critic, but is more myopic.

• GRPO generalizes DPO by using group-level statistics to compute advantages, striking a
balance between the simplicity of DPO and the stability of multi-step methods like PPO.

Together, these methods provide a spectrum of techniques—from multi-step RL algorithms like PPO
and TRPO to single-step, supervised-like methods such as DPO and GRPO—for aligning policies
with human preferences.
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9 Optimal Control and Planning

In reinforcement learning (RL), the objective is to maximize the expected cumulative reward over
trajectories:

pθ(s1, a1, . . . , sT , aT ) = pθ(τ) = p(s1)

T∏
t=1

π(at | st)p(st+1 | st, at)

θ∗ = argmax
θ

Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]
.

In model-free RL, we do not assume knowledge of the dynamics p(st+1 | st, at). However, in many
practical scenarios we either know the dynamics or can learn an approximate model. Knowing the
dynamics allows us to use model-based approaches, which include methods from optimal control,
trajectory optimization, and planning.

9.1 Model-based Reinforcement Learning

Model-based RL typically involves the following steps:

1. Learn or use known dynamics: Obtain p(st+1 | st, at) either from prior knowledge or by
learning it from data.

2. Decision Making: With dynamics in hand, choose actions by leveraging planning or optimal
control methods. This can be done by:

(a) Solving an optimal control problem or performing trajectory optimization.
(b) Planning over a horizon using methods like Monte Carlo Tree Search (MCTS).

3. Policy Learning: One may also imitate the behavior of an optimal controller to learn a
policy.

9.2 The Control/Planning Objective

When dynamics are known (or estimated), the planning or optimal control problem is typically
formulated as:

min
a1,...,aT

T∑
t=1

c(st, at) s.t. st = f(st−1, at−1),

or equivalently, maximizing the cumulative reward:

a1, . . . , aT = argmax
a1,...,aT

T∑
t=1

r(st, at) s.t. st = f(st−1, at−1).

Here, c(st, at) is a cost function (often defined as the negative reward) and f(st−1, at−1) denotes the
deterministic dynamics.

Deterministic Case

In the deterministic case, the optimal action sequence is given by:

a1, . . . , aT = argmax
a1,...,aT

T∑
t=1

r(st, at) s.t. st = f(st−1, at−1).

This formulation is common in traditional optimal control and trajectory optimization.
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Stochastic Open-Loop Case

In an open-loop formulation, the agent chooses an entire sequence of actions without receiving
intermediate feedback. The dynamics are stochastic:

pθ(s1, . . . , sT | a1, . . . , aT ) = p(s1)

T∏
t=1

p(st+1 | st, at).

The optimization objective is then:

a1, . . . , aT = argmax
a1,...,aT

E

[
T∑
t=1

r(st, at)

∣∣∣∣∣ a1, . . . , aT
]
.

Open-loop methods choose the entire action sequence in one shot, as opposed to closed-loop methods
which update actions based on observed states.

Stochastic Closed-Loop Case

For closed-loop control (i.e., feedback control), the agent’s policy is defined over state-action pairs:

pθ(s1, a1, . . . , sT , aT ) = p(s1)

T∏
t=1

π(at | st)p(st+1 | st, at),

and the optimal policy is obtained by solving:

π∗ = argmax
π

Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]
.

This is the classical formulation in RL, where decisions are made at each time step using state
feedback.

9.3 Stochastic Optimization for Control and Planning

Optimal control and planning can also be viewed as a stochastic optimization problem:

a1, . . . , aT = argmax
a1,...,aT

J(a1, . . . , aT ).

Let A = (a1, . . . , aT ); then the problem reduces to:

A = argmax
A

J(A).

Cross-Entropy Method (CEM)

The Cross-Entropy Method (CEM) is a popular stochastic optimization technique for trajectory
optimization:

1. Sampling: Sample A1, . . . , An from an initial distribution p(A).
2. Evaluation: Compute the objective values J(A1), . . . , J(An).
3. Selection: Select M elite samples Ai1 , . . . , AiM with the highest values, where M < n.
4. Refitting: Refit the distribution p(A) (e.g., update the mean and variance) using the elite

samples.
5. Iteration: Repeat until convergence.

Monte Carlo Tree Search (MCTS)

MCTS is a planning algorithm that constructs a search tree by exploring promising actions:

1. Tree Expansion: Starting at the root s1, use TreePolicy to traverse the tree until a leaf sl
is reached.

34



2. Rollout: Use DefaultPolicy to simulate a trajectory from sl and obtain an estimate of
the value.

3. Backpropagation: Update the value Q and visit count N along the path from s1 to sl.
4. Action Selection: After several iterations, choose the best action from the root s1 and repeat

the process.

Each node in the tree stores an estimate of Q(s) and the number of visits N(s). A common tree
policy, such as UCT (Upper Confidence Bound for Trees), selects the next node using:

Score(st) =
Q(st)

N(st)
+ 2C

√
2 lnN(st−1)

N(st)
,

where C is a tunable constant.

9.4 Optimal Control

When the dynamics are known, optimal control theory provides tools for solving the control problem.
Consider the deterministic case:

min
u1,...,uT

T∑
t=1

c(st, ut) s.t. xt = f(xt−1, ut−1).

This expands as:

min
u1,...,uT

[
c(x1, u1) + c

(
f(x1, u1), u2

)
+ · · ·+ c

(
f(f(. . . ), uT

)]
.

Shooting Methods vs. Collocation

• Shooting Methods: These methods (such as CEM) optimize over the sequence of control
inputs u1, . . . , uT by forward simulating the system.

• Collocation Methods: These methods simultaneously optimize over states and control
inputs while enforcing the dynamics constraints xt = f(xt−1, ut−1).

Linear Quadratic Regulator (LQR)

For linear dynamics and quadratic cost, the problem becomes tractable via the LQR framework.
Suppose the dynamics are:

f(xt, ut) = Ft

[
xt
ut

]
+ ft,

and the cost is quadratic:

c(xt, ut) =
1

2

[
xt
ut

]T
Ct

[
xt
ut

]
+

[
xt
ut

]T
ct.

At the terminal time T , we define:

CT =

[
CxT ,xT

CxT ,uT

CuT ,xT
CuT ,uT

]
, cT =

[
cxT

cuT

]
.

The base case is solved by minimizing the quadratic cost with respect to uT :

Q(xT , uT ) = const +
1

2

[
xT
uT

]T
CT

[
xT
uT

]
+

[
xT
uT

]T
cT , (58)

∆uT
Q(xT , uT ) = CuT ,xT

xT + CuT ,uT
uT + cuT

= 0, (59)

uT = −C−1
uT ,uT

(
CuT ,xT

xT + cuT

)
. (60)

We can write this as:

uT = KTxT + kT , with KT = −C−1
uT ,uT

CuT ,xT
, kT = −C−1

uT ,uT
cuT

.
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Substituting uT into the cost, we express the terminal cost as a quadratic function of xT :

V (xT ) = const +
1

2
xTTVTxT + xTT vT .

Then, the backward recursion is performed from t = T to 1:

1. At time t, the Q-function is given by:

Q(xt, ut) = const +
1

2

[
xt
ut

]T
Qt

[
xt
ut

]
+

[
xt
ut

]T
qt,

where
Qt = Ct + FTt Vt+1Ft, qt = ct + FTt Vt+1ft + FTt vt+1.

2. The optimal control law is obtained by:

ut = argmin
ut

Q(xt, ut) = Ktxt + kt, Kt = −Q−1
ut,ut

Qut,xt , kt = −Q−1
ut,ut

qut .

3. The value function is updated by:

Vt = Qxt,xt
+Qxt,ut

Kt +KT
t Qut,xt

+KT
t Qut,ut

Kt, vt = qxt
+Qxt,ut

kt +KT
t qut

.

Finally, a forward recursion computes the state trajectory:

ut = Ktxt + kt, (61)

xt+1 = f(xt, ut). (62)

Stochastic Dynamics

If the dynamics are stochastic, for example when

p(xt+1 | xt, ut) = N
(
Ft

[
xt
ut

]
+ ft, Σt

)
,

and if the probability distribution is Gaussian with linear mean and fixed covariance, similar methods
can be applied using the symmetry of the Gaussian distribution.

Nonlinear Systems: DDP and Iterative LQR

For nonlinear dynamics, one common approach is to use a Taylor expansion around a nominal
trajectory. Let x̂t, ût be a nominal trajectory. Then:

f(xt, ut) ≈ f(x̂t, ût) +
∂f

∂x, u

∣∣∣
(x̂t,ût)

[
xt − x̂t
ut − ût

]
, (63)

c(xt, ut) ≈ c(x̂t, ût) +
∂c

∂x, u

∣∣∣
(x̂t,ût)

[
xt − x̂t
ut − ût

]

+
1

2

[
xt − x̂t
ut − ût

]T
∂2c

∂x, u2

∣∣∣
(x̂t,ût)

[
xt − x̂t
ut − ût

]
. (64)

Defining the perturbations δxt = xt − x̂t and δut = ut − ût, one obtains a linear-quadratic
approximation that can be solved by iterative LQR (iLQR) or Differential Dynamic Programming
(DDP). These methods are essentially Newton’s method applied to the trajectory optimization
problem.

For more details on trajectory optimization, see:

1. Differential Dynamic Programming (1970).
2. Synthesis and Stabilization of Complex Behaviors through Online Trajectory Opti-

mization (2012) — a practical guide for implementing nonlinear iterative LQR.
3. Learning Neural Network Policies with Guided Policy Search under Unknown Dynam-

ics (2014) — which presents a probabilistic formulation and a trust region alternative to
deterministic line search.
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10 Model-Based Reinforcement Learning (Learning the Model)

Model-based reinforcement learning (MBRL) aims to learn a model of the environment’s dynamics
and, optionally, the reward function, so that planning or control techniques from optimal control
can be applied. In this section, we describe several versions of MBRL, discuss challenges such as
overfitting and distribution mismatch, and explain strategies to incorporate model uncertainty and
deal with high-dimensional observations.

10.1 Basic Approach

Why learn the model?

If we knew f(st, at) = st+1 (or p(st+1 | st, at) in the stochastic case), we could directly apply
optimal control and planning techniques from our previous courses.

A simple version of model-based RL (version 0.5) follows these steps:

1. Data Collection: Run a base policy π0(at | st) (e.g., a random policy) to collect a dataset

D = {(s, a, s′)i}.

2. Model Learning: Learn a dynamics model f(s, a) by minimizing the prediction error:

min
f

∑
i

∥f(si, ai)− s′i∥2.

3. Planning: Use the learned model f(s, a) to plan a sequence of actions.

Does it work?

• This approach mirrors the concept of system identification in classical robotics.

• The quality of the base policy is important because it determines the data distribution.

• It is particularly effective when we can incorporate physics knowledge into the model design
(thus reducing the number of parameters to learn).

• A major limitation is that the learned model fits the data collected under the base policy;
when the policy is updated, a distribution mismatch problem may occur.

10.2 Over-Fitting and Distribution Mismatch

10.2.1 Distribution Mismatch Problem

Can we do better?

The goal is to make the state distribution under the base policy match that of the final (improved)
policy, i.e., pπ0

(st) = pπf
(st). One strategy (version 1.0) is to iteratively augment the dataset:

1. Run the base policy π0(at | st) to collect an initial dataset D = {(s, a, s′)i}.
2. Learn the dynamics model f(s, a) to minimize∑

i

∥f(si, ai)− s′i∥2.

3. Plan using f(s, a) to choose actions.

4. Execute these actions, collect the resulting transitions {(s, a, s′)j}, and add them to D.

5. Repeat steps 2–4.

However, model errors may accumulate, leading to poor performance if not handled carefully.
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10.2.2 Model Predictive Control (MPC)

A further refinement (version 1.5) uses MPC to mitigate model error accumulation:

1. Collect an initial dataset D using π0(at | st).
2. Learn the dynamics model f(s, a) from D.

3. Plan through f(s, a) to generate a sequence of candidate actions.

4. Execute only the first planned action and observe the resulting state s′.

5. Append the new transition (s, a, s′) to D and re-plan every N steps.

MPC re-plans frequently, thereby reducing the impact of model errors.

10.3 Incorporating Model Uncertainty

Can we improve performance by considering model uncertainty?

When a model is learned from limited data, its predictions may be unreliable in regions not well
covered by the data. We can improve robustness by estimating the model’s uncertainty.

How to get uncertainty?

1. Output Entropy: One might use the entropy of the model’s output distribution, though this
is generally not effective.

2. Bayesian Methods: Compute∫
p(st+1 | st, at, θ) p(θ | D) dθ,

which requires a distribution p(θ | D) over model parameters. Bayesian neural networks
(BNN) can be employed for this purpose.

3. Bootstrap Ensembles: Train multiple models (an ensemble) and use the diversity among
their predictions as a proxy for uncertainty:

p(θ | D) ≈ 1

N

N∑
i=1

δ(θ − θi),

leading to the predictive distribution approximation:∫
p(st+1 | st, at, θ) p(θ | D) dθ ≈

1

N

N∑
i=1

p(st+1 | st, at, θi).

Training Considerations: To obtain diverse models, one can use re-sampling with replacement
(bootstrapping) to generate multiple training datasets. However, in practice, random initialization and
SGD often provide sufficient diversity without explicit re-sampling.

For evaluating a candidate action sequence a1, . . . , aH :

1. Sample a model parameter θ from the approximate posterior.

2. For each time step t, sample st+1 from p(st+1 | st, at, θ).

3. Compute the total reward R =
∑H
t=1 r(st, at).

4. Repeat the process to average the reward over multiple samples.

10.4 Model-Based RL with Images (POMDP)

High-dimensional observations, such as images, pose additional challenges due to redundancy and
partial observability. One solution is to learn a latent space representation.
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10.4.1 Model-Based RL with Latent Space Models

Challenges with Complex Observations:

• High dimensionality.
• Redundancy in the observations.
• Partial observability.

Approach:

• Learn an encoder gψ(ot) that maps raw observations ot to a latent state st. For simplicity,
we assume a deterministic encoder:

qψ(st | ot) = δ(st = gψ(ot)) =⇒ st = gψ(ot).

• Learn a dynamics model pϕ(st+1 | st, at) in the latent space, as well as a decoder pϕ(ot | st)
to reconstruct observations.

• Optionally, learn a reward model pϕ(rt | st).

The training objective can combine prediction and reconstruction losses:

max
ϕ,ψ

1

N

N∑
i=1

T∑
t=1

E
[
log pϕ

(
gψ(ot+1,i) | gψ(ot,i), at,i

)
+ log pϕ(ot,i | gψ(ot,i))

]
,

or include a reward term:

max
ϕ,ψ

1

N

N∑
i=1

T∑
t=1

E
[
log pϕ

(
gψ(ot+1,i) | gψ(ot,i), at,i

)
(65)

+ log pϕ(ot,i | gψ(ot,i)) (66)

+ log pϕ(rt,i | gψ(ot,i))
]
. (67)

Overall Procedure:

1. Data Collection: Run a base policy π0(ot | at) (e.g., a random policy) to collect data
D = {(o, a, o′)i}.

2. Model Learning: Learn the encoder gψ(ot), latent dynamics pϕ(st+1 | st, at), decoder
pϕ(ot | st), and optionally the reward model pϕ(rt | st).

3. Planning: Plan actions by simulating rollouts in the latent space.
4. Execution (MPC): Execute the first action from the planned sequence, observe the new

observation o′, and update D.
5. Iteration: Repeat planning and execution, and periodically re-learn the model.

10.4.2 Learning Directly in Observation Space

An alternative is to directly learn a predictive model in observation space:

p(ot+1 | ot, at),

and plan using image prediction. However, this approach typically requires much larger models and
more data.
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11 Model-Based RL and Policy Learning

In some applications, rather than relying solely on planning with a learned model, one may wish to
learn an explicit policy that generalizes well and allows for closed-loop control without re-planning
at every time step.

11.1 Basic Idea

Why learn a policy?

• Avoid the computational cost of re-planning at every time step.
• Achieve better generalization across states.
• Enable efficient closed-loop control.

The main idea is to use the learned dynamics model to generate training data (or even gradients) for a
policy πθ(at | st).

11.2 Model-Based RL Version 2.0: Policy Learning

A typical procedure is:

1. Data Collection: Run a base policy π0(at | st) (e.g., a random policy) to collect

D = {(s, a, s′)i}.

2. Model Learning: Learn a dynamics model f(s, a) by minimizing∑
i

∥f(si, ai)− s′i∥2.

3. Policy Update: Back-propagate through the model f(s, a) into the policy parameters to
optimize πθ(at | st).

4. Data Augmentation: Execute the updated policy πθ(at | st) in the environment, collect
new transitions (s, a, s′), and add them to D. Repeat steps 2–4.

Challenges:

• The process can be highly sensitive to parameters, similar to shooting methods.
• Unlike LQR-like methods, there is no convenient second-order update because the policy

parameters affect the entire trajectory.
• Back-propagation through long sequences (akin to training deep RNNs with BPTT) can

lead to vanishing or exploding gradients.

11.3 Guided Policy Search (GPS)

GPS combines trajectory optimization with policy learning by treating optimal control as an expert
that guides the policy. Consider the constrained trajectory optimization problem:

min
u1,...,uT , x1,...,xT

T∑
t=1

c(st, ut) s.t. xt = f(xt−1, ut−1), ut = πθ(xt).

This can be solved by dual gradient descent, where the Lagrangian is constructed as:

L̄(τ, θ, λ) = c(τ) +

T∑
t=1

λt
(
πθ(xt)− ut

)
+

T∑
t=1

ρt
(
πθ(xt)− ut

)2
.

The overall process involves:

1. Trajectory Optimization: Optimize the trajectory τ (using methods like iLQR) with respect
to a surrogate cost.
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2. Policy Update: Train the policy πθ in a supervised manner to match the optimized actions.
3. Dual Updates: Update the dual variables λ (and possibly ρ) to enforce the constraint
ut = πθ(xt).

GPS can be interpreted as:

• A constrained trajectory optimization method.
• Imitation learning from an adaptive optimal control expert.

11.3.1 Imitation Optimal Control with DAgger and PLATO

An alternative is to use a DAgger-like process:

1. From the current state, run a planning algorithm (e.g., MCTS) to generate a trajectory.
2. Add the state-action pair (st, at) from the planner to a dataset D.
3. Execute the action from the current policy π(at | st) and collect new data.
4. Repeat and update the policy with supervised learning.

PLATO is a variant that uses a stochastic behavior policy (e.g., a Gaussian policy)
π̂(ut | xt) = N (Ktxt + kt,Σut

),

and optimizes a planning objective with a KL constraint:

π̂(ut | xt) = argmin
π̂

T∑
t′=t

Eπ̂

[
c(xt′ , ut′)

]
+ λDKL

(
π̂(ut | xt) ∥πθ(ut | ot)

)
.

This adaptive expert mitigates the issues in standard DAgger.

11.4 Model-Free Optimization with a Model

Even with a learned model, one can apply model-free RL methods (e.g., policy gradients) by treating
the model as a simulator. In some cases, using the model gradients may work better than planning
gradients.

11.4.1 Dyna

Dyna is an integrated approach that combines model-free learning with a learned model:

1. Given a state s, select an action a using an exploration policy.
2. Execute a, observe s′ and reward r, and store the transition (s, a, s′, r) in a buffer.
3. Update the model p̂(s′ | s, a) (and optionally, r̂(s, a)) using the collected data.
4. Perform Q-learning updates using both real transitions and simulated transitions from the

model.

Dyna-style methods require only short rollouts from the model to avoid error accumulation.

11.5 Algorithm Summary and Trade-offs

11.5.1 Methods

• Learn Model and Plan (Without Policy):
– Iteratively collect data to reduce distribution mismatch.
– Use MPC to re-plan at each step, mitigating model error.

• Learning a Policy:
– Back-propagate through the learned model to update the policy (e.g., PILCO).
– Use guided policy search (GPS) to combine trajectory optimization with policy learn-

ing.
– Apply imitation learning techniques such as DAgger or PLATO.
– Use model-free methods on simulated data (e.g., Dyna).
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11.5.2 Limitations of Model-Based RL

• Requirement for a Model: A model may not be available, and learning an accurate model
can be as challenging as learning a policy.

• Time and Data Demands: Expressive models (e.g., deep networks) require significant data
and computational resources.

• Additional Assumptions: Assumptions such as linearizability, smoothness, or the ability to
reset the environment are often necessary.

11.5.3 Intuitive Understanding

• Why use model-based RL? Model-free RL relies on extensive exploration over large state
spaces. MBRL leverages a learned model to plan promising trajectories, thereby reducing
the need for random exploration.

• Why not use optimal control alone? Direct application of optimal control (e.g., MPC)
is often limited by model inaccuracies and the difficulty in handling high-dimensional or
complex observations. Learning a policy from planned trajectories (or using guided policy
search) can yield better closed-loop performance.

• Available Methods: Options include planning without a policy, learning a policy via guided
search, and using model-based simulators to enhance model-free learning.

11.6 Choosing the Right Algorithm

The appropriate algorithm depends on the trade-off between sample efficiency and computational
efficiency. Consider the following:

• Gradient-free Methods: (e.g., NES, CMA-ES) often require many samples but less
computational effort per sample.

• Online Methods: (e.g., A3C) update the policy at each step.
• Policy Gradient Methods: (e.g., TRPO) can offer stable updates but may be computation-

ally intensive.
• Replay-Buffer Value Estimation: (e.g., Q-learning, DDPG, NAF, SAC) balance sample

efficiency and stability.
• Model-Based Deep RL: (e.g., PETS, guided policy search) offer high sample efficiency at

the cost of increased computation.
• Model-Based “Shallow” RL: (e.g., PILCO) can be extremely sample efficient in low-

dimensional tasks.

The choice depends on factors such as the task complexity, available computational resources, and
the need for sample efficiency.

In summary, model-based reinforcement learning leverages a learned or known dynamics model
to reduce exploration requirements by shifting the problem to planning. By iteratively updating
the model and addressing issues such as distribution mismatch and model uncertainty, MBRL can
provide significant advantages in sample efficiency. Moreover, integrating model-based techniques
with policy learning (via guided policy search, DAgger, or Dyna) can yield robust and generalizable
controllers.
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12 Variational Inference and Generative Models

Variational inference provides a framework for learning probabilistic models with latent variables.
Generative models such as Variational Autoencoders (VAEs) leverage latent variable models to
capture complex data distributions. In this section, we first review probabilistic models with latent
variables, then derive the variational lower bound, and finally explain how to optimize these models
using the re-parameterization trick and amortized inference.

12.1 Probabilistic Models and Latent Variable Models

Latent variable models assume that the observed data x is generated from some unobserved (latent)
variable z. In general, the marginal likelihood of x is given by:

p(x) =
∑
z

p(x | z)p(z)

or, in the continuous case,

p(x) =

∫
p(x | z)p(z) dz.

For conditional models, where one wishes to predict y given x, the model is:

p(y | x) =
∑
z

p(y | x, z)p(z).

A common approach is to assume a simple prior for z, such as a Gaussian:

p(z) = N (0, I),

and to model the conditional likelihood with a neural network:

p(x | z) = N (µnn(z), σnn(z)).

Thus, by feeding a random Gaussian vector z into the neural network, we can model a wide range of
complex distributions over x.

In reinforcement learning (RL), latent variable models are useful for representing multi-modal policies
or behaviors, where the latent variables capture different modes of the expert’s behavior.

12.2 Training Latent Variable Models via Maximum Likelihood

Suppose we wish to model the data distribution with a model pθ(x) given a dataset D =
{x1, x2, . . . , xN}. In a latent variable model, the marginal likelihood is

pθ(x) =

∫
pθ(x | z)p(z) dz.

A maximum likelihood approach would optimize

θ∗ = argmax
θ

1

N

N∑
i=1

log pθ(xi) = argmax
θ

1

N

N∑
i=1

log

(∫
pθ(xi | z)p(z) dz

)
.

An alternative is to maximize the expected joint log-likelihood under a posterior over the latent
variable:

θ∗ = argmax
θ

1

N

N∑
i=1

Ez∼p(z|xi) log pθ(xi, z).

Since the true posterior p(z | xi) is generally intractable, we instead introduce a variational distribu-
tion qi(z) to approximate it.
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12.3 The Variational Approximation

For a given observation xi, the model defines

pθ(xi) =

∫
pθ(xi | z)p(z) dz.

We can write:

log pθ(xi) = log

∫
pθ(xi | z)p(z) dz

= log

∫
pθ(xi | z)p(z)

qi(z)

qi(z)
dz

= logEz∼qi(z)

[
pθ(xi | z)p(z)

qi(z)

]
≥ Ez∼qi(z)

[
log

pθ(xi | z)p(z)
qi(z)

]
(Jensen’s inequality)

= Ez∼qi(z) [log pθ(xi | z) + log p(z)]− Ez∼qi(z) [log qi(z)]
= Ez∼qi(z) [log pθ(xi | z) + log p(z)] +H(qi),

where the entropy of qi is defined as

H(qi) = −Ez∼qi(z) [log qi(z)] .

The Kullback-Leibler (KL) divergence between qi(z) and the true posterior p(z | xi) is

DKL(qi(z) ∥ p(z | xi)) = Ez∼qi(z)

[
log

qi(z)

p(z | xi)

]
= Ez∼qi(z)

[
log

qi(z)pθ(xi)

pθ(xi, z)

]
= −Ez∼qi(z) [log pθ(xi | z) + log p(z)] + Ez∼qi(z) [log qi(z)] + log pθ(xi)

= −Li(p, qi) + log pθ(xi),

where we define the variational lower bound (ELBO) for xi as

Li(p, qi) = Ez∼qi(z) [log pθ(xi | z) + log p(z)] +H(qi).

Thus, we obtain:
log pθ(xi) = DKL(qi(z) ∥ p(z | xi)) + Li(p, qi),

which implies
log pθ(xi) ≥ Li(p, qi).

Maximizing Li(p, qi) (and thereby minimizing the KL divergence) yields a better approximation of
the true posterior p(z | xi).
Our training objective becomes:

θ∗ = argmax
θ

1

N

N∑
i=1

Li(p, qi),

with
Li(p, qi) = Ez∼qi(z) [log pθ(xi | z) + log p(z)] +H(qi).

12.4 Amortized Variational Inference

Learning a separate qi(z) for each data point xi can be inefficient. Instead, we use a shared inference
network (encoder) qϕ(z | x) that approximates the posterior for all data points. For example, we can
choose:

qϕ(z | x) = N
(
µϕ(x), σϕ(x)

)
.
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The variational lower bound for each xi becomes:

L(xi) = Ez∼qϕ(z|xi) [log pθ(xi | z) + log p(z)] +H
(
qϕ(z | xi)

)
.

We then optimize the parameters θ (of the generative model) and ϕ (of the inference network) jointly
by maximizing:

θ∗, ϕ∗ = argmax
θ,ϕ

1

N

N∑
i=1

L(xi).

12.5 The Re-parameterization Trick

A key challenge in optimizing the ELBO with respect to ϕ is that the expectation is taken over
qϕ(z | x), whose parameters depend on ϕ. A naive estimator based on the REINFORCE trick has
high variance. Instead, the re-parameterization trick expresses the latent variable z as a deterministic
function of ϕ and a noise variable ϵ:

z = µϕ(x) + ϵ σϕ(x), ϵ ∼ N (0, I).

Then, the expectation becomes:

Ez∼qϕ(z|x)

[
·
]
= Eϵ∼N (0,I)

[
·
(
µϕ(x) + ϵ σϕ(x)

)]
.

The gradient with respect to ϕ can then be computed by back-propagation through the deterministic
function, yielding a low-variance estimator:

∆ϕL(x) ≈
1

M

M∑
j=1

∇ϕ log pθ

(
x, µϕ(x) + ϵj σϕ(x)

)
,

where ϵ1, . . . , ϵM are samples from N (0, I).

12.6 Variational Autoencoder (VAE)

The variational autoencoder (VAE) is a concrete implementation of amortized variational inference in
which the generative model pθ(x | z) (the decoder) and the inference network qϕ(z | x) (the encoder)
are jointly trained by maximizing the variational lower bound:

L(x) = Ez∼qϕ(z|x) [log pθ(x | z)]−DKL

(
qϕ(z | x) ∥ p(z)

)
.

This objective encourages the encoder to produce latent representations that both allow accurate
reconstruction of the input and remain close to the prior p(z). The re-parameterization trick makes it
possible to optimize this objective end-to-end via back-propagation.

12.7 Conditional Models and Extensions

For conditional generative models, where the goal is to model p(y | x), the latent variable model
takes the form:

p(y | x) =
∫
pθ(y | x, z)p(z | x) dz.

In the variational framework, we introduce an approximate posterior qϕ(z | x, y) and optimize the
corresponding lower bound:

L(x, y) = Ez∼qϕ(z|x,y)

[
log pθ(y | x, z) + log p(z | x)

]
+H

(
qϕ(z | x, y)

)
.

Variational inference has broad applications, including:

• Modeling complex multi-modal distributions.

• Enhancing exploration in reinforcement learning.

• Capturing multi-modal policies in RL using conditional latent variable models.
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Intuition: Variational inference enables us to represent complex data distributions by introducing
latent variables that capture the underlying factors of variation. In the VAE framework, the encoder
compresses the data into a latent representation, and the decoder reconstructs the data from this
representation. The variational lower bound ensures that the learned latent space is both informative
for reconstruction and regularized to follow a known prior (typically a standard Gaussian). The
re-parameterization trick provides a means to efficiently back-propagate gradients through stochastic
sampling operations, allowing end-to-end training of these generative models.

This approach is fundamental to modern generative modeling and is widely used in applications
ranging from image synthesis to reinforcement learning, where latent variable models can capture
multi-modal and complex behaviors.
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13 Re-framing Control as an Inference Problem

In this section, we reinterpret the classical control and decision-making problem as one of probabilis-
tic inference. Instead of directly optimizing a policy to maximize cumulative reward, we cast control
as inferring the most probable trajectory under a distribution that favors high rewards. This perspec-
tive unifies planning, optimal control, and reinforcement learning under a common probabilistic
framework.

13.1 From Policy to Objective via Inference

The key idea is to reinterpret decision making as an inference problem. In many real-world scenarios,
human behavior is stochastic and not perfectly optimal—but overall it achieves good performance.
By introducing a probabilistic model of optimality, we can capture this behavior.

13.2 A Probabilistic Graphical Model of Decision Making

We introduce an optimality variable Ot at each time step, which is a Boolean variable indicating
whether the action taken at time t is “optimal” or desirable. We define this variable through the
likelihood:

p(Ot | st, at) = exp
(
r(st, at)

)
,

so that higher rewards correspond to higher probabilities of optimality. Under this formulation, the
joint probability of a trajectory τ = (s1, a1, . . . , sT , aT ) and all optimality variables is:

p(τ,O1:T ) = p(τ)

T∏
t=1

exp
(
r(st, at)

)
,

where p(τ) = p(s1)
∏T
t=1 π(at | st)p(st+1 | st, at) is the usual trajectory probability. Thus, the

posterior over trajectories conditioned on optimality is given by

p(τ | O1:T ) =
p(τ,O1:T )

p(O1:T )
∝ p(τ) exp

( T∑
t=1

r(st, at)
)
.

This result shows that maximizing the cumulative reward is equivalent to finding the most probable
trajectory given that all actions are “optimal.”

13.3 Inference via Backward Messages

To perform inference in this graphical model, we define backward messages that capture the probabil-
ity of future optimality given the current state and action. Let

βt(st, at) = p(Ot:T | st, at),
which can be computed recursively. Assuming that the optimality variables factorize over time, we
have:

βt(st, at) = p(Ot | st, at) Est+1∼p(st+1|st,at)
[
βt+1(st+1)

]
,

and by marginalizing over actions:

βt(st) =

∫
βt(st, at) dat.

It is useful to work in the log-domain. Define
Vt(st) = log βt(st) and Qt(st, at) = log βt(st, at).

Then the relationship between state and action values is:

Vt(st) = log

∫
exp
(
Qt(st, at)

)
dat.

In the limit of large Qt values, Vt(st) approximates maxat Qt(st, at). The recursion for the Q-
function is then:

Qt(st, at) = r(st, at) + logEst+1∼p(st+1|st,at)

[
exp
(
Vt+1(st+1)

)]
.

For deterministic transitions, this simplifies to the familiar recursion:
Qt(st, at) = r(st, at) + Vt+1(st+1).
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13.4 Policy Computation via Inference

The optimal policy can be derived by conditioning on the optimality variables. We want to compute:

π(at | st) = p(at | st,O1:T ).

Using Bayes’ rule and the definition of backward messages, we have

p(at | st,O1:T ) =
p(O1:T | st, at) p(at | st)

p(O1:T | st)

=
βt(st, at)

βt(st)
p(at | st).

If we assume a uniform (or uninformative) prior p(at | st), this simplifies to:

π(at | st) =
βt(st, at)

βt(st)
.

Expressing this in the log-domain using our value functions, we obtain:

π(at | st) = exp
(
Qt(st, at)− Vt(st)

)
.

More generally, introducing a temperature parameter α yields:

π(at | st) = exp
( 1
α
Qt(st, at)−

1

α
Vt(st)

)
= exp

( 1
α
At(st, at)

)
,

where At(st, at) = Qt(st, at)−Vt(st) is analogous to an advantage function. As α approaches zero,
the policy becomes nearly deterministic (favoring the action with the maximum Qt); for larger α, the
policy is more stochastic.

13.5 Forward Messages and Their Role

In addition to backward messages, forward messages propagate information from the past. Define the
forward message as

αt(st) = p(st | O1:t−1),

which can be written as

αt(st) =

∫
p(st, st−1, at−1 | O1:t−1) dst−1 dat−1.

Expanding this using the dynamics and the policy (conditioned on past optimality), one can show
that the smoothed state distribution given all optimality is proportional to the product of forward and
backward messages:

p(st | O1:T ) ∝ αt(st)βt(st).
This decomposition is useful for algorithms that perform inference over entire trajectories.

13.6 The Optimism Problem in Inference-Based Control

A challenge arises when conditioning on optimality: the backward recursion becomes

βt(st, at) = p(Ot | st, at) Est+1∼p(st+1|st,at)
[
βt+1(st+1)

]
,

and defining
Vt(st) = log βt(st), Qt(st, at) = log βt(st, at),

we obtain
Qt(st, at) = r(st, at) + logE

[
exp
(
Vt+1(st+1)

)]
.

Because we condition on trajectories with high cumulative reward, the inferred transition probabilities
become biased toward optimistic outcomes. In other words, p(st+1 | st, at,O1:T ) is not equal to
the true dynamics p(st+1 | st, at). To address this optimism problem, one can employ variational
inference techniques to find a distribution q(s1:T , a1:T ) that is close to p(s1:T , a1:T | O1:T ) while
respecting the true dynamics.
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13.7 Control via Variational Inference

We can cast control as a variational inference problem. Suppose we define a variational distribution
over trajectories as

q(s1:T , a1:T ) = p(s1)

T∏
t=1

p(st+1 | st, at) q(at | st),

where q(at | st) is a variational policy. By applying standard variational inference, we obtain a lower
bound on log p(O1:T ):

log p(O1:T ) ≥ E(s1:T ,a1:T )∼q

[
T∑
t=1

log p(Ot | st, at)− log q(at | st)

]

= E(s1:T ,a1:T )∼q

[
T∑
t=1

(
r(st, at) +H

(
q(at | st)

))]
.

Maximizing this lower bound corresponds to maximizing the expected reward while also encouraging
high-entropy (exploratory) policies.

A soft Bellman backup then follows:

Qt(st, at) = r(st, at) + Est+1∼p(st+1|st,at)

[
Vt+1(st+1)

]
,

with
Vt(st) = α log

∫
exp
( 1
α
Qt(st, at)

)
dat,

where the temperature α controls the trade-off between reward maximization and entropy.

13.8 Policy Gradient with Soft Optimality

Under the variational formulation, the optimal policy that maximizes the variational lower bound is
given by

π(at | st) =
βt(st, at)

βt(st)
= exp

(
Qt(st, at)− Vt(st)

)
.

Introducing a temperature parameter α, we can write:

π(at | st) = exp
( 1
α
Qt(st, at)−

1

α
Vt(st)

)
= exp

( 1
α
At(st, at)

)
.

This form naturally connects to soft policy gradient and soft Q-learning methods, where policies are
proportional to the exponentiated Q-values, leading to smoother and more robust learning.

13.9 Benefits of the Inference Formulation

Re-framing control as an inference problem offers several advantages:

• Exploration via Entropy: Including an entropy term in the objective encourages exploration
and prevents premature convergence to suboptimal deterministic policies.

• Robustness: The soft Bellman backup integrates over all actions, leading to smoother value
estimates and inherent tie-breaking.

• Human Behavior Modeling: The probabilistic formulation naturally captures the stochastic
and sometimes suboptimal behavior observed in human decision making.

• Connection to Soft Q-Learning: As the temperature parameter α decreases, the formulation
approaches the hard optimal control case, while higher α values yield more exploratory,
stochastic policies.

In summary, by re-framing control as an inference problem, we derive a probabilistic framework in
which the task of control becomes equivalent to inferring a trajectory (or policy) that is most likely
under a distribution weighted by rewards. This leads to soft value functions, policy representations
that blend reward and entropy, and robust algorithms that are closely connected to soft Q-learning
and policy gradient methods.
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14 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) seeks to infer the underlying reward function from expert
demonstrations. Unlike standard imitation learning—which focuses solely on copying actions—IRL
tries to recover the expert’s intent or objective. This approach is particularly useful when the reward
function is complicated, ambiguous, or unknown.

14.1 Why Should We Worry About Learning Rewards?

There are two perspectives on imitation:

• Standard Imitation Learning:
– Simply copy the action performed by the expert.
– No reasoning is done regarding the outcomes or long-term consequences.

• Human Imitation Learning:
– Aim to infer the intent of the expert.
– Different actions may be taken as long as the outcome is similar.

From the reinforcement learning perspective, the reward function itself can be complex and unclear.
Instead of imitating actions directly, it may be more beneficial to infer the underlying reward structure
and then learn an optimal policy accordingly.

14.2 Inverse Reinforcement Learning Formulation

In IRL, we are given:

• A state space S and an action space A.

• (Optionally) a transition model p(s′ | s, a).
• A set of demonstration trajectories {τi} sampled from the expert policy π∗(τ).

Our goal is to learn a reward function rψ(s, a) such that, when used in a reinforcement learning
algorithm, the resulting policy π∗(a | s) reproduces the expert’s behavior.

14.3 Learning the Optimality Variable

We introduce an optimality variable Ot that encodes whether an action at time t is “optimal.” Define
its likelihood as:

p(Ot | st, at, ψ) = exp
(
rψ(st, at)

)
.

Then the probability of a trajectory conditioned on all optimality variables is

p(τ | O1:T , ψ) ∝ p(τ) exp

(
T∑
t=1

rψ(st, at)

)
.

This formulation means that trajectories yielding higher cumulative rewards are exponentially more
likely to be considered optimal.

14.4 The IRL Partition Function and Likelihood Objective

Given a set of expert trajectories {τi}Ni=1, we can define the maximum likelihood objective as

max
ψ

1

N

N∑
i=1

log p(τi | O1:T , ψ) = max
ψ

1

N

N∑
i=1

(
rψ(τi)− logZ

)
,

where

Z =

∫
p(τ) exp

(
rψ(τ)

)
dτ
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is the partition function that normalizes the probabilities. The gradient with respect to ψ is

∆ψL =
1

N

N∑
i=1

∆ψrψ(τi)−
1

Z

∫
p(τ) exp

(
rψ(τ)

)
∆ψrψ(τ) dτ.

This can be rewritten as

∆ψL = Eτ∼π∗(τ)

[
∆ψrψ(τ)

]
− Eτ∼p(τ |O1:T ,ψ)

[
∆ψrψ(τ)

]
.

Thus, the update drives the learned reward to make expert trajectories more likely while penalizing
trajectories generated by the current policy.

14.5 Estimating the Expectation

Let the visitation frequency of state-action pairs under the optimality-conditioned distribution be
defined as

µt(st, at) ∝ β(st, at)α(st),
where β and α are backward and forward messages respectively. Then, the expectation over trajecto-
ries can be decomposed as

Eτ∼p(τ |O1:T ,ψ)

[
∆ψrψ(τ)

]
=

T∑
t=1

E(st,at)∼p(st,at|O1:T ,ψ)

[
∆ψrψ(st, at)

]
=

T∑
t=1

µ⊤
t ∆ψrψ.

14.6 The MaxEnt IRL Algorithm

The maximum entropy (MaxEnt) IRL framework seeks to infer the reward function that best explains
the expert’s behavior while favoring high-entropy policies. The overall algorithm proceeds as follows:

1. Backward Pass: Given the current reward parameters ψ, compute the backward message
β(st, at) for all state-action pairs.

2. Forward Pass: Compute the forward message α(st) and the visitation frequencies
µt(st, at) ∝ β(st, at)α(st).

3. Gradient Evaluation: Evaluate the gradient

∆ψL =
1

N

N∑
i=1

T∑
t=1

∆ψrψ(si,t, ai,t)−
T∑
t=1

∫
µt(st, at)∆ψrψ(st, at) dst dat.

4. Update: Adjust ψ by a small step:

ψ ← ψ + η∆ψL.

When the reward is linear in features, rψ(s, a) = ψ⊤f(s, a), it can be shown that maximizing the
likelihood is equivalent to matching feature expectations between the expert and the learned policy
while maximizing policy entropy (see Ziebart et al., 2008).

14.7 Efficient Sample-Based Updates

Direct evaluation of the partition function and visitation frequencies can be intractable for large or
continuous state-action spaces. Practical approaches include:

Guided Cost Learning: Approximate the gradient using samples:

∆ψL ≈
1

N

N∑
i=1

∆ψrψ(τi)−
1

M

M∑
j=1

∆ψrψ(τj),

where the τj are generated from a soft optimal policy induced by the current reward.
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Importance Sampling: Use importance weights wj to reweight samples from the current policy:

∆ψL ≈
1

N

N∑
i=1

∆ψrψ(τi)−
1∑
j wj

M∑
j=1

wj ∆ψrψ(τj),

with

wj =
p(τ) exp

(
rψ(τj)

)
π(τj)

=
exp
(∑

t rψ(st, at)
)

∏
t π(at | st)

.

IRL as a Generative Adversarial Network (GAN): Alternatively, one can view IRL through
the lens of GANs. Define a discriminator Dψ(τ) that distinguishes expert trajectories from those
generated by the policy:

Dψ(τ) =
p(τ) 1

Z exp
(
rψ(τ)

)
p(τ) 1

Z exp
(
rψ(τ)

)
+ π(τ)

.

The discriminator is trained to maximize:

ψ ← argmax
ψ

Eτ∼p∗(τ)
[
logDψ(τ)

]
+ Eτ∼π(τ)

[
log(1−Dψ(τ))

]
,

and the policy is updated to minimize:

∆θL ≈
1

M

M∑
j=1

∆θ log πθ(τj) logDψ(τj).

This adversarial formulation forces the learned policy to imitate the expert by making the generated
trajectories indistinguishable from the expert’s.

14.8 Summary and Intuitive Remarks

Inverse reinforcement learning seeks to recover a reward function rψ(s, a) that explains expert
behavior. In the maximum entropy framework, the likelihood of a trajectory is weighted by the
exponential of its cumulative reward:

p(τ | O1:T , ψ) ∝ p(τ) exp
(∑

t

rψ(st, at)
)
.

The gradient update for the reward parameters involves the difference between the gradients computed
on expert demonstrations and those computed on trajectories generated by the current (soft) policy.
To make these updates tractable, sample-based methods, importance sampling, and even adversarial
formulations (similar to GANs) are employed.

Intuitive Points:

• IRL is underspecified; many reward functions can explain the same behavior. Maximum
entropy IRL biases the solution toward reward functions that lead to high-entropy (i.e.,
diverse) policies.

• Instead of merely imitating actions, IRL infers the underlying objectives that generate those
actions.

• Efficient sample-based updates are critical for handling large or continuous state-action
spaces.
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15 Transfer and Multi-task Learning

Transfer learning in reinforcement learning (RL) involves using prior knowledge or experience
acquired in one set of tasks (source domain) to improve the learning speed or performance on a new
task (target domain). In RL, a task is typically defined by its Markov Decision Process (MDP).

Shot Types:

• 0-shot: Directly applying a policy trained in the source domain to the target domain without
any additional adaptation.

• 1-shot: The target task is attempted once, relying on minimal adaptation from the transferred
knowledge.

• Few-shot: The agent is allowed a small number of attempts in the target domain to fine-tune
or adapt the transferred policy.

Approaches to Transfer and Multi-task Learning:

1. Forward Transfer: Train on a single source task and then transfer to a new target task.
(a) Direct Transfer: Simply apply the learned policy to the target task and hope that it

performs well.
(b) Fine-tuning: Use the pre-trained policy as an initialization and further train it on the

new task.
(c) Domain Randomization: Train on a range of randomized source tasks to develop a

more robust policy that generalizes better to new environments.
2. Multi-task Transfer: Train simultaneously on a variety of tasks, so that the learned policy

(or representation) can generalize to new tasks.
(a) Highly Randomized Source Domains: Expose the agent to a diverse set of tasks during

training.
(b) Model-Based RL: Use models that capture the underlying structure common to multiple

tasks.
(c) Model Distillation: Distill knowledge from several task-specific policies into a single,

more general policy.
(d) Contextual Policies: Learn policies that condition on a task-specific context or embed-

ding.
(e) Modular Policy Networks: Design policies with interchangeable modules that can be

recombined for new tasks.
3. Multi-task Meta-learning: Learn to learn by training on many tasks such that the agent

quickly adapts to a new task with only a small amount of data.
(a) RNN-based Meta-learning: Use recurrent neural networks to capture task structure and

adapt online.
(b) Gradient-based Meta-learning: Methods such as MAML (Model-Agnostic Meta-

Learning) that explicitly optimize for rapid adaptation.

This section provides a high-level overview of the various approaches and trade-offs in transfer and
multi-task learning. For more detailed information and specific algorithms, refer to the lecture slides
and recommended papers.
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16 Distributed Reinforcement Learning

Distributed reinforcement learning scales up RL algorithms by leveraging parallel computation and
multiple agents (actors) interacting with the environment simultaneously. This approach is crucial for
improving sample efficiency and accelerating training, especially in environments where obtaining
data is costly.

Historical Timeline and Key Methods:

• 2013/2015: DQN utilizes a replay buffer to decorrelate training samples.
• 2015: GORILA (General Reinforcement Learning Architecture) introduces distributed

training for value-based methods.
• 2016: A3C (Asynchronous Advantage Actor-Critic) employs a single learner with multiple

actors running in parallel; the actors compute gradients which are sent asynchronously to
the central learner.

• 2018: IMPALA (Importance Weighted Actor-Learner Architecture) extends A3C by using
multiple learners and actors, and employs importance sampling (V-trace) to correct for
delays between policy updates.

• 2018: Ape-X and R2D2 reintroduce the replay buffer concept into distributed RL, leading to
significant performance improvements.

• 2019: R2D3 further advances the distributed framework.
• RLlib: Provides abstractions and a framework for implementing distributed reinforcement

learning algorithms, as presented in ICML 2018.

Distributed RL systems share several common design elements:

• Actors: Multiple agents interact with the environment in parallel, generating a diverse set
of experiences.

• Learners: One or more central learners update the policy or value function parameters
using the aggregated experiences.

• Replay Buffers: In some architectures, experiences are stored in a centralized buffer and
sampled for training to improve sample efficiency.

• Importance Sampling: Techniques such as V-trace in IMPALA correct for the lag between
the actors’ policies and the learner’s updated policy.

In summary, distributed reinforcement learning enables the scaling of RL algorithms by leveraging
parallelism. The choice of architecture (e.g., A3C, IMPALA, Ape-X) depends on the specific
requirements for sample efficiency, computational resources, and the nature of the environment.
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17 Exploration

Exploration is a critical aspect of reinforcement learning (RL) that determines how effectively an
agent discovers new, potentially rewarding states and actions. In this section, we discuss various
exploration strategies, starting with the classical multi-armed bandit setting and then extending these
ideas to deep RL.

17.1 Exploration in Bandits

In the multi-armed bandit setting, the goal is to minimize regret over a time horizon T . The regret is
defined as

Reg(T ) = T E[r(a∗)]−
T∑
t=1

r(at),

where a∗ is the optimal arm and r(at) is the reward received at time t.

17.1.1 Optimistic Exploration

A popular exploration strategy is optimistic exploration, where each arm is assigned an optimistic
estimate of its reward. For example, if µ̂a is the empirical mean reward for arm a and σa its
uncertainty, one might select

a = argmax
a

(
µ̂a + C σa

)
.

A common instance is

a = argmax
a

(
µ̂a +

√
2 lnT

N(a)

)
,

which yields a regret of O(log T ).

17.1.2 Probability Matching / Posterior Sampling

Another effective exploration strategy is posterior sampling (or Thompson Sampling). Assume the
reward for each arm ai is generated according to a parameterized distribution pθi(ri). This approach
can be summarized as follows:

1. Sample θ1, . . . , θn from the current posterior p̂(θ1, . . . , θn).
2. Pretend that the sampled parameters represent the true model.
3. Choose the arm that is optimal under the sampled model.
4. Update the posterior with new observations and repeat.

17.1.3 Information Gain

An alternative perspective is to choose actions that maximize information gain. LetH(p̂(z)) denote
the current entropy of our belief over some variable z, andH(p̂(z) | y) the entropy after observing y.
The information gain is defined as

IG(z, y) = Ey

[
H(p̂(z))−H(p̂(z) | y)

]
.

Conditioned on an action a, it is written as

IG(z, y | a) = Ey

[
H(p̂(z))−H(p̂(z) | y) | a

]
.

In the bandit setting, if we set y = ra and z = θa, and let
g(a) = IG(θa, ra | a),

and define the expected regret for arm a as
∆(a) = E

[
r(a∗)− r(a)

]
,

one might select the arm

a = argmin
a

∆(a)2

g(a)
,

balancing the potential loss against the information gained.
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17.2 Exploration in Deep Reinforcement Learning

17.2.1 Optimistic Exploration in RL

In deep RL, optimistic exploration strategies extend the ideas from bandits. One common approach is
to add an exploration bonus to the reward based on state or state-action counts:

r+(s, a) = r(s, a) + B(N(s)),

where N(s) (or N(s, a)) is the visit count and B(N(s)) is a bonus function. Because exact counts
are infeasible in large state spaces, similarity measures or density models (e.g., pθ(s)) are used to
estimate pseudo-counts.

17.2.2 Exploring with Pseudo-Counts

Pseudo-count methods work as follows:

1. Fit a density model pθ(s) to all states observed so far (D).
2. When a new state si is encountered, update the density model to pθ′(s) based on D ∪ {si}.
3. Estimate an effective count:

N̂(si) = n̂ pθ(si),

where

n̂ =
1− pθ′(si)

pθ′(si)− pθ(si)
pθ(si).

4. Define the exploration bonus as a function of N̂(s), for example:

B(N̂(s)) =

√
2 lnT

N̂(s)
.

17.2.3 Common Bonus Functions

Several bonus functions are commonly used:

• UCB: B(N(s)) =
√

2 lnT
N(s) .

• MBIE-EB: B(N(s)) =
√

1
N(s) .

• BEB: B(N(s)) = 1
N(s) .

17.2.4 Models for Estimating pθ(s)

Various methods exist for modeling the state density:

• CTS Models: As proposed by Bellemare et al., a context tree switching (CTS) model
conditions each pixel on its top-left neighborhood.

• Hashing: Compress s into a k-bit code using a function ϕ(s), and count occurrences
N(ϕ(s)).

• Exemplar Models: Train a classifier to distinguish a new state from past states; a state is
novel if the classifier performs well. The density can be estimated as:

pθ(s) =
1−Ds(s)

Ds(s)
,

where Ds(s) is the classifier’s output.
• Prediction Errors: Use a target function f∗(s, a) and define a bonus based on the prediction

error:
ξ(s, a) = ∥f̂θ(s, a)− f∗(s, a)∥2.

A common choice is f∗(s, a) = s′ or to use a randomly initialized network (Random
Network Distillation).
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17.2.5 Posterior Sampling in Deep RL

Posterior sampling, also known as Thompson Sampling, can be approximated in deep RL using
bootstrap methods:

1. Given a dataset D, generate N bootstrap datasets by sampling with replacement.
2. Train a separate model fθi on each bootstrap dataset.
3. At decision time, select one model fθi at random and act according to its prediction.

To reduce computational overhead, one can share a common base network with multiple output heads.

17.2.6 Reasoning About Information Gain

An alternative to count-based bonuses is to measure the information gain from observing a new state.
Define the information gain (IG) as

IG(z, y) = Ey

[
H(p̂(z))−H(p̂(z) | y)

]
,

and conditionally,
IG(z, y | a) = Ey

[
H(p̂(z))−H(p̂(z) | y) | a

]
.

For bandits, setting y = ra and z = θa and defining
g(a) = IG(θa, ra | a),

we can choose the arm that minimizes
∆(a)2

g(a)
,

where ∆(a) = E[r(a∗)− r(a)] is the expected regret of arm a.

17.3 Exploration in Deep RL: Bonus-Driven Methods

17.3.1 Optimistic Exploration via Count-Based Bonuses

In deep RL, optimistic exploration is implemented by augmenting the reward function:
r+(s, a) = r(s, a) + B(N(s)),

where N(s) is replaced by pseudo-counts or density estimates when explicit counts are not available.

17.3.2 Exploring with Pseudo-Counts

Using a density model pθ(s) and its updated version pθ′(s) after observing a new state, an effective
count can be estimated as:

N̂(s) = n̂ pθ(s), with n̂ =
1− pθ′(s)

pθ′(s)− pθ(s)
pθ(s).

The exploration bonus is then set as a function of N̂(s).

17.4 Imitation Learning vs. Reinforcement Learning for Exploration

Imitation Learning:

• Requires expert demonstrations.
• Suffers from distributional shift if the learned policy deviates from the expert.
• Relies on stable supervised learning.

Reinforcement Learning:

• Requires a well-defined reward function.
• Must tackle the exploration–exploitation dilemma.
• Can, in principle, achieve higher performance by discovering novel strategies.

Combining Both: When both demonstrations and reward signals are available, one can combine
them—using inverse RL, for example—to leverage the advantages of both approaches.
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17.4.1 Pre-training and Fine-tuning

A simple method to combine imitation and RL is:

1. Pre-train: Initialize the policy πθ by behavior cloning using demonstration data:

max
θ

∑
i

log πθ(ai | si).

2. Fine-tune: Use an RL algorithm to further improve πθ on the target task.

This approach is effective but may suffer from distribution shift if the initial performance is poor.

17.4.2 Off-Policy RL with Demonstrations

Off-policy RL methods can incorporate demonstration data into the replay buffer. For example, one
may modify the policy gradient as follows:

∆J(θ) =
∑
τ∈D

[
T∑
t=1

∆θ log πθ(at | st)

(
t∏

t′=1

πθ(at′ | st′)
q(at′ | st′)

)(
T∑
t′=t

r(st′ , at′)

)]
,

where D includes both demonstration and self-generated data. Challenges include determining the
appropriate weighting for demonstration data and handling multiple data distributions.

17.4.3 Imitation as an Auxiliary Loss

Alternatively, one can add an imitation loss to the RL objective:

Hybrid Objective: Eπθ
[r(s, a)] + λ

∑
(s,a)∈Ddemo

log πθ(a | s).

This auxiliary loss encourages the policy to mimic expert behavior while still optimizing for reward.

17.5 Summary

Exploration in RL is essential for discovering rewarding behaviors, especially in environments with
sparse or deceptive rewards. Classical strategies include optimistic exploration (e.g., UCB), posterior
sampling (Thompson Sampling), and information gain. In deep RL, count-based exploration is
extended via pseudo-counts and density models. Balancing exploration and exploitation remains a
central challenge, and combining imitation learning with RL can help bootstrap exploration when
demonstrations are available.
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18 Meta Reinforcement Learning

This part introduced many meta learning methods at a high level. You may find and read the papers
later.
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19 Information Theory, Challenges, Open Problems

19.1 Information Theory

Entropy: The entropy of a distribution p(x) is defined as

H(p(x)) = −Ex∼p(x)[log p(x)].

Mutual Information: The mutual information between random variables X and Y is given by

I(X;Y ) = DKL

(
p(x, y) ∥ p(x)p(y)

)
= E(x,y)∼p(x,y)

[
log

p(x, y)

p(x)p(y)

]
= H(p(y))−H(p(y | x)).

If π(s) denotes the state marginal distribution of a policy π, thenH(π(s)) is the entropy of the state
distribution under the policy.

Empowerment: Empowerment is a measure of the influence an agent has over its future states. It
is defined as the mutual information between actions and subsequent states:

I(st+1; at) = H(st+1)−H(st+1 | at).

19.2 Learning without a Reward Function by Reaching Goals

One approach to learning in the absence of an explicit reward function is to provide goal states and
train the agent to reach them. For example, a variational autoencoder (VAE) can be used to generate
diverse goal states. A possible procedure is:

1. Propose a goal: Sample a latent variable zg ∼ p(z) and generate a goal state xg ∼ pθ(xg |
zg).

2. Attempt to reach the goal: Use a policy π(a | x, xg) conditioned on the current state x
and the goal xg to produce a final state x̄.

3. Update the policy: Use the collected data (x, xg, x̄) to update the policy.
4. Update the generative model: Refine the goal generator pθ(xg | zg) and the encoder
qϕ(zg | xg) using the observed outcomes.

But how to diversify goals? One approach is to modify the maximum likelihood estimation (MLE)
objective:

• Standard MLE: Optimize

(θ, ϕ)← argmax
θ,ϕ

E
[
log p(x̄)

]
.

• Weighted MLE: Optimize

(θ, ϕ)← argmax
θ,ϕ

E
[
w(x̄) log p(x̄)

]
,

where the weight is defined as
w(x̄) = pθ(x̄)

α.

A key result is that for α ∈ [−1, 0), the entropy H(pθ(x)) increases, effectively maximizing the
entropy over the goal distributionH(p(G)).

Link to RL: A policy π(s | S,G) is trained to reach a goal G such that as the policy improves, the
final state S becomes closer to G. Equivalently, the conditional distribution p(G | S) becomes more
deterministic. Thus, the overall objective can be expressed as:

maxH(p(G))−H(p(G | S)) = max I(S;G),
which maximizes the mutual information between states and goals.
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19.3 Learning Diverse Skills

To learn a diverse set of skills, consider policies of the form π(a | s, z), where z is a task or skill
identifier. The intuition is that different values of z should lead the policy to explore different regions
of the state space. A diversity-promoting reward function is given by:

r(s, z) = log p(z | s).

Maximizing this reward encourages the policy to visit states that are uniquely associated with each
task index z. This is equivalent to maximizing the mutual information between the latent variable z
and the state s:

I(z; s) = H(z)−H(z | s).
A uniform prior on z (maximizingH(z)) combined with a minimization ofH(z | s) results in diverse
skill acquisition. This approach is explored in the paper Diversity is All You Need (ICLR 2019).

19.4 Unsupervised Reinforcement Learning for Meta-Learning

Unsupervised RL can be employed to propose tasks for meta-learning:

1. First, use unsupervised meta-RL to generate a set of diverse tasks.

2. Then, apply meta-learning algorithms on these tasks to enable fast adaptation to new tasks.

19.5 Challenges in Deep Reinforcement Learning

Core Algorithmic Challenges:

• Stability: Many RL algorithms suffer from unstable training dynamics.

• Efficiency: Sample complexity is a major issue, particularly in real-world applications.

• Generalization: RL agents often struggle to generalize beyond the specific tasks or environ-
ments on which they were trained.

Assumptions:

• The formulation of the problem (e.g., state space, action space, MDP structure).

• The availability and quality of supervision (e.g., demonstrations, language, or human
feedback).

19.5.1 Stability and Hyper-parameter Tuning

• Algorithms such as Q-learning and policy gradients require careful tuning of numerous
hyper-parameters (learning rates, target network update frequency, replay buffer size, etc.).

• Model-based RL faces additional challenges in back-propagating through time and avoiding
exploitation of model errors.

19.5.2 Sample Complexity

• Many RL algorithms require large amounts of data, making them impractical in real-world
settings.

• This motivates research into more sample-efficient methods, such as model-based approaches
and meta-learning.

19.5.3 Scaling & Generalization

• While many studies focus on performance in controlled environments, generalization to new
and varied tasks remains an open problem.

• RL often requires re-collecting data when the environment changes.
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19.5.4 Single Task vs. Multi-task Learning

• Training on multiple tasks can improve generalization.
• Techniques include policy distillation, actor-mimic, and meta-learning methods like MAML.
• Unsupervised or weakly supervised approaches (e.g., using stochastic neural networks or

energy-based models) may facilitate learning of diverse behaviors.

Supervision Signals:

• Tasks can be defined via demonstrations, language instructions, or human preferences.
• Unsupervised or self-supervised objectives (e.g., predicting future states) also provide

valuable signals.

19.6 Rethinking Reinforcement Learning from the Perspective of Generalization (Chelsea
Finn)

19.6.1 Meta-Learning

Meta-learning, or "learning to learn," aims to train agents that can quickly adapt to new tasks:

• Gradient-based meta-learning methods (e.g., MAML) optimize for fast adaptation.
• RNN-based meta-learning leverages recurrent networks to capture task-specific information.
• Recent work has focused on off-policy meta-reinforcement learning via probabilistic context

variables.

These approaches typically require that the meta-training task distribution matches the meta-testing
task distribution to achieve good generalization.

Key Considerations:

• Algorithms: More general algorithms may be needed than those based solely on demonstra-
tion or trial-and-error.

• Task Representation: How tasks are described (e.g., using language or goal specifications)
is critical.

• Data: Datasets such as RoboNet provide valuable resources for training agents across
diverse tasks.
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